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ABSTRACT

These pages present a study of gaseous diffusion into and

turbulent entrainment from steady as well as nonsteady fully

cavitating flows and characterize the nonsteady cavity as a dynaiic

element in a water tunnel test section. An approximate theoretical

analysis is done for gaseous diffusion across steady axisymmetric

cavities. A comparison with experimental results reveals that the

present approximate analysis is suited for better estimates of

gaseous diffusion across the gas-liquid interface of axisymmetric

cavities than past analyses.

Water-tunnel experiments for two-dimensional flows were

conducted on cavities behind a stationary and oscillating "flat

plate" (wedge) hydrofoil. It is found that the steady cavity

pressures were significantly higher than the vapor pressure of water

and larger cavities tend to maintain higher cavity pressures.

Unsteady cavity pressures were found to be significant only at low

frequencies of profile oscillation. Downstream and upstream of the

cavity, the oscillating cavity was observed to behave like a dipole

source at low frequencies of oscillation and like a quadrupole

source at high frequencies of foil oscillation. An analysis of the

oscillating cavity lengths revealed that for sinusoidal motions of

the foil, the first two harmonics of the cavity mctions are

significant.

A mathematical model is then developed to estimate the

nonsteady gaseous entrainment behind two-dimensional steady and

oscillating cavities. This model takes into account the varying gas
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pressure as well as varying cavity lengths. It is observed that

this model has the proper steady state limit. Steady and nonsteady

gas entrainment rates were estimated for the two-dimensional

cavity. It is found that gas pressure within the cavity affects

the steady entrainment behind the cavity. The phase angle between

the foil motion and cavity motion is determined by a physically

driven argument that is seen to be consistent with experimental

observations. The nonsteady gaseous entrainment behind the cavity

is seen to depend only on the cavity volume fluctuations and cavity

gas pressure fluctuations.
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CHAPTER 1

INTRODUCTION

1.1 Preliminary_

In many liquid flow systems, some form of unsteady cavity flow

exists at one or more locations in the circuit. Such unsteady cavity

flow may arise intentionally as in the case of water tunnel

experiments on nonsteady cavity flows or unintentionally as in the

case of high speed, high performance turbomachines in various liquid

flow systems such as nuclear reactors and liquid rocket engines. In

any case, the presence of an unsteady cavity within a liquid might

create disturbances that could tend to make the system unstable. The

propagation of such disturbances becomes even more significant when

small gas bubbles are present in the liquid, wherein the acoustic

celerity of the gas-liquid mixture is greatly reduced. A classic

example is the "POGO" instability observed in liquid rocket engines

(1,2). In closed circuit water tunnel operation involving unsteady

cavity flow experimentation, mass oscillations of the entire circuit

and "breathing of the tunnel" have been reported (3-5). In order to

obtain valid nonsteady force measurements involving cavity flow in

closed circuit water tunnels, the nature of the unsteady cavity as a

disturbance source and the dynamics of the water tunnel itself must be

clearly understood.

It is the purpose of this thesis to examine the physical aspects

(such as gaseous diffusion into the cavity and its turbulent

entrainment into the cavity wake) that govern the nature of unsteady

I
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cavities so that system responses to unsteady cavity flows may be more

accurately predicted and related to force measurements on oscillating

struts and foils. This latter aspect, involving the dynamics of any

particular facility, is outside the scope of this study, however.

1.2 Cavity Aspects

Whenever the local pressure in a region within the liquid falls

below the vapor pressure of the liquid at the ambient temperature, the

liquid evaporates and a cavity is formed. The size and shape of the

cavity is governed by the cavity pressure and the shape and attitude

of the body on which the cavity is formed. The cavity is usually

characterized by a quantity known as the "cavitation number" which is

defined as:
p - P

a c ll
2. ' P (1.1)

1/2oU2

where

a - cavitation number,

p. - free stream static pressure,

Pc - cavity pressure,

p. - free stream density of the liquid,

U. - free stream velocity.

In a purely vaporous cavity, the cavity pressure is equal to the

vapor pressure of the liquid at the ambient temperature of the liquid.

Gadd and Grant (6), among others, have demonstrated that the measured

cavity pressure, pc, within fully developed natural cavities exceeds

the liquid vapor pressure, pv, because of the unavoidable presence of
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gases dissolved in the liquid. These gases diffuse through the cavity

interface and set up a partial pressure of gas pG' in the cavity so

that

Pc =  (1.2)

Thus, the presence of dissolved gases in the liouid affect the

cavitation number a and the behavior of the cavity itself to a

great extent.

The influence of dissolved gases on the behavior of single

bubble cavities, viz., growth and collapse, has been the subject

of many previous investigations. Epstein and Plesset (7) studied

the stability of gas bubbles in liquid gas solutions. Parkin and

Kermeen (8) studied steady gaseous molecular diffusion into a

microbubble. They investigated the influence of gaseous diffusion

on the growth of small bubbles in a flow field containing

dissolved gases. In cavity flows, when the boundary layer on the

cavity surface is turbulent, Brennen (9) has shown that turbulent

gaseous diffusion into the cavity may be more significant than

molecular diffusion. Brennen (9) also extended his two-dimensional

theory to include the gaseous diffusion across an axisymmetric

cavity by wrapping the two-dimensional solution around the cavity.

Several experimental investigations have been devoted to the

understanding of gaseous diffusion across steady cavities (10-13).

A majority of these studies are devoted to the understanding of

axisymmetric cavities because of frequent occurrence of such shaves

in marine applications. Swanson and O'Neill (10) investigated the

stability aspects of ventilated cavities behind circular discs in
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steady flow. Cox and Clayden (11) studied the air entrainment behind

cavities. Billet and Weir (13) measured the entrainment rates

behind ventilated axisymmetric cavities.

The unsteadiness of a cavity arise in two distinct forms. The

first one is the auto oscillation of steady cavities (particularly the

ventilated cavities) that is prevalent at certain cavitation numbers.

This phenomenon has been studied in great detail by Song (14) and

Silberman and Song (15). The second form is the forced oscillation of

the cavity due to the oscillation of the body on which the cavity is

formed. '.jpical examples are a cavity behind an oscillating hydrofoil

and a cavity on a propeller blade. The oscillations of the cavity may

be classified into two distinct forms of motion (16): First, the

motion of the cavity wherein the volume of the cavity changes

significantly; second, the motion of the cavity wherein the shape of

the cavity changes significantly but the cavity volume remains

essentially constant. As the cavity volume changes, the partial

pressure of gas inside the cavity changes. Since the time scale of the

process of vapor release and absorption is very much smaller than the

period of cavity oscillations typically encountered, the vapor pressure

inside the cavity essentially remains constant. Thus the cavity

pressure within an oscillating cavity may be written as

PCW t  = Pv + P G( t )  (1.3)

where pG(t) is the cavity gas pressure. Then the cavitation number

o(t) of an oscillating cavity is given by

I
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0(t - 0 -pG(t) )2o * (1.4)
1/2 UM

where 0 is the cavitation number based on the vapor pressure of the

liquid. Jiang and Leehey (17) have measured the cavity pressure

within an oscillating cavity behind an elliptical wing oscillating

in pitch. They found that the unsteady cavity pressure depends on

the frequency of oscillation and that the unsteady pressures are

significant at low frequencies of oscillation.

One of the earliest models used in characterizing the unsteady

cavity as a source of disturbances in fluid flow system was in

connection with the analysis of "POGO" instability in liquid rocket

engines. By defining a quantity called "cavitation compliance" which

relates the mass flow fluctuations and the corresponding pressure

fluctuations, Rubin (2) was able to model the oscillating cavitating

bubble as a simple spring mass system. Brennen and Acosta (18) showed

that Rubin's model for a cavitating pump inducer is rather simple.

The results of their experimental investigation revealed appreciable

departure from Rubin's quasi-steady model due to dynamic effects at

high frequency. Huse (16), in an attempt to predict cavitation damage

on the hull of a ship due to a cavitating propeller, represented the

unsteady cavity at the tip of the propeller as a combination of

acoustic monopole and dipole sources. His analytical results compared

well with the experiments.
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1.3 Scope of Present Investigation

The gas pressure within the cavity is a quantity of fundamental

importance in steady and nonsteady cavity flows. The gas pressure

within the cavity dictates the amount of gas diffusion across the

cavity surface. Hence we seek to describe the diffusion phenomeon

analytically and to compare the results with the best available

experimental data. To our knowledge, the data of Billet and Weir

(13) are the best available and they pertain to axisymmetric flows.

In Chapter 2 we first demonstrate using a heuristic model, the

lack of correlation between existing mathematical models for gaseous

diffusion across axisymmetric cavities and corresponding experimental

results. Then, we use the convective diffusion theory proposed by

Parkin (8) with the molecular diffusivity being replaced by a turbulent

diffusivity to predict the gaseous diffusion across an axisymmetric

cavity surface. We then show that two-dimensional gaseous diffusion

models cannot always be used to predict gaseous diffusion across

axisymmetric cavities. This naturally led us to the formulation of

convective diffusion of gases for axisymmetric cavity shapes. We

solve the steady diffusion equation in cylindrical coordinates as it

applies to the gaseous diffusion across an axisymmetric cavity surface.

Although the general solution of the governing differential equation

is fairly straightforward, the peculiar set of boundary conditions

for the present idealized representation of the flow and cavity of

interest here makes the problem challenging.

The solution of the problem is built up by superposition starting

from the known point source solution in a moving fluid. First, we use
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the point source solution to derive the solution to the governing

differential equation for a "unit ring source." Second, we integrate

the ring source of unknown strength over the length of the doubly

infinite circular cylinder in the streamwise direction. The

application of boundary conditions on this cylindrical cavity surface

results in a system of integral equations which must be solved in order

to determine the source strength. From this solution, the mass flow

rate of gases diffusing across the cavity may be obtained.

As pointed out by Greitzer (20), there is a general lack of

theoretical and experimental results available in the literature that

characterize the unsteady cavity as an active dynamic element.

Therefore, an effort was made to understand the behavior of unsteady

cavities experimentally in this study. We conducted experiments on a

cavitating wedge foil oscillating in pitch. Specifically, we were

interested in measuring the cavity lengths and cavity pressures (steady

and nonsteady) as a function of oscillation frequency and

characterizing the source-like nature of oscillating cavities. We

found that an oscillating cavity has the behavior of a dipole source

and that the unsteady cavity pressures are significant at low

frequencies of oscillation. We also found that the motion of the

cavity is far from being sinusoidal even though the motion of the foil

was sinusoidal. In particular, the first harmonic overtone was found

to be significant. In Chapter 3 the details of this experimental

investigation are presented and the results are discussed.

m'
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The experimental results presented in Chapter 3 as well as those

of Jiang and Leehey (17) have indicated clearly the effect of non-

condensable gas on the behavior of an unsteady cavity. While several

investigations in the past have addressed the effect of steady gaseous

diffusion into the cavity, there is very little literature, if any,

that deals with the analysis of unsteady diffusion across cavity

surfaces. In Chapter 4, we formulate and solve the two-dimensional

unsteady diffusion problem. The problem, as formulated, accounts

for both the cavity pressure fluctuations and cavity length

fluctuations. The solution of the unsteady diffusion equation is

obtained by the separation of variables. The expression for mass

diffusion rate is obtained in a manner similar to the method outlined

by Parkin (8) for steady two-dimensional flow. The result for

unsteady mass diffusion rate across a two-dimensional cavity surface

matches the steady state solution predicted by Parkin (8) in the

limit when the frequency of cavity oscillation vanishes.

In Chapter 5, we consider the two diizensional steady cavity

closure as well as nonsteady cavity closure condition when the cavity

is not purely vaporous. The steady closure condition is seen to be

rather straightforward to formulate and analyze. In analyzing the

nonsteady gaseous cavity closure, we find that it is important to

consider the phase differences that exist between the body motion and

i) cavity volume (or almost equivalently the cavity length)

fluctuation, ii) the unsteady gaseous diffusion through the entire

cavity surface, and iii) gas pressure fluctuation within the cavity

respectively. In the absence of any available theoretical or

experimental data on the phase lag between the body motion and cavity
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length motion, we appeal to a physically driven argument that cavity

surface waves originating from the upper surface and lower surface of a

foil must terminate at the same point at the same instant. This

results in the phase lag being numerically equal to the modified

reduced frequency of foil oscillation. The nonsteady gaseous cavity

closure is then formulated using the nonsteady continuity equation.

With the help of the experimental data reported above, continuity

enables the determination of magnitude and phase of the nonsteady

entrained gas behind the cavity in terms of the reduced frequency of

oscillation k', the nonsteady mass diffusion through the cavity

surface, the cavity pressure fluctuations and the cavity volume

fluctuations.

The reader will find that an analytical approach has been used

throughout the present study. The reason for this being, analytical

solutions render better physical insight than numerical solutions.
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CHAPTER 2

GASEOUS DIFFUSION STUDIES ACROSS AN AXISYMM4ETRIC

PERMEABLE CAVITY SURFACE

2.1 Introduction

A thorough analysis of the gaseous diffusion process across a

cavity surface is fundamental to the understanding of both natural and

ventilated cavity flows because diffusion into or out of the liquid

can influence the cavity pressure to a great extent. Analysis of

gaseous diffusion across axisymmetric cavity surfaces is of particular

interest because of the frequent occurrence of such cavity flows in

marine applications.

Steady diffusion of gases across a two-dimensional cavity has

been studied by Parkin (8). Parkin used this planar solution to

approximate the rate of molecular diffusion into a microbubble.

Brennen (9) considered turbulent gaseous diffusion into a large

two-dimensional cavity by using a model which assumes that the

turbulence is associated with the turbulent shear layer on the cavity

surface. Billet and Weir (13) have attempted to use Brennen's model

to predict the rate of diffusion across axisymmetric cavity surfaces.

They found when Brennen's two-dimensional solution is extended to the

axisymmetric case by wrapping the two-dimensional solution around the

cavity, that the observed diffusion rate exceeds the analytical

prediction by nearly one order of magnitude. They circumvented this

discrepancy by using their experimental data to choose a constant

multiplicative factor in Brennen's model.

I
I

Jp



Brennen's solution assumes that the diffusion occurs through the

turbulent eddies within the turbulent boundary layer on the cavity

surface. Hence Brennen's solution is applicable only where the

boundary layer has had a chance to grow on the surface of the body

before a cavity is formed, as for example, behind the trailing edge

of a hydrofoil. But in cases where the cavity emerges from the

leading edge of a hydrofoil at small angle of attack or the cavity is

on a zero caliber ogive as in the experiments of Billet and Weir,

the boundary layer on the cavity near the leading edge is laminar

and very thin; and since the cavity surface is then a laminar free

shear layer, the rate of growth of this part of the boundary layer

is small. For such flows it appears as though a different approach

has to be followed in modeling the turbulent diffusion phenomenon.

In many cases, this laminar shear layer is of short axial extent

and the shear layer is turbulent thereafter.

In this chapter, an attempt is made to clear some of the

discrepancies observed by Billet and Weir (13) in their effort to

compare their measurements with Brennen's theory. A convective slug

flow model is first used to estimate the maximum possible mass

convective diffusion rate of gas through the turbulent boundary

layer on the axisymmetric cavity surface. These estimates are then

compared with the experimental results of Billet and Weir (13) and

Brennen's theory. Then, a turbulent diffusivity (that is

representative of free shear flows) is used instead of molecular

diffusivity as in Parkin's model, to compare with the experimental

results. A mathematical model is then formulated for gaseous

diffusion across an axisymmetric cavity surface.
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2.2 Convective Slug Flow Model for Mass Diffusion Rate Estimation

Brennen's theory assumes that all of the diffusion occurs from

turbulent eddies that are within the boundary layer. For cavity

flows wherein the cavity emerges from the leading edge, the boundary

layer on the cavity surface is very thin and Brennen's theory may

not quite be applicable. In order to demonstrate whether or not

Brennen's theory is applicable in such situations and to assist

speculations about other possible mechanisms for gaseous diffusion

in cavity flows, the following conservative estimates are carried

out using a slug flow model.

We assume that the quantity of dissolved gases available for

diffusion is contained within a volume of liquid determined by the

maximum thickness of the turbulent boundary layer and the length of

the cavity as shown in Figure 2.1. We also assume that all gas in

this volume diffuses into the cavity instantaneously and then the

slug of volume in the shape of a hollow cylinder of mean radius

"a," length "L" and thickness "6," equal to the maximum shear layer

thickness at the cavity terminus, is swept downstream and a fresh

supply of gases becomes available every L/U. seconds.

If we denote by c, the concentration difference across the

cavity surface, the maximum possible diffusion rate is estimated

as

M= (27aL6)c(U /L)

or

M- 21TaU i6c . (2.1)at
• 1
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TURBULENT BOUNDARY LAYER

SURFACE

L '
Figure 2.1. Slug Flow Model for Esti~actng the Gaseous

Diffusion across an Axis=zetric Cavity.
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The mass diffusion rates predicted by the slug-flow model are shown

in Table 2.1 for cavities behind zero caliber ogive models. Also

shown in the table are the experimental values of mass diffusion

rates from Billet and Weir (13) and the mass diffusion rates predicted

by Brennen's theory (9). A comparison of the diffusion rates

predicted by the slug-flow model and the experiments shows that even

by conservative estimates, the maximum gas diffusion possible through

the turbulent boundary layer is nearly one order of magnitude less

than the experimentally observed values.

2.3 Modified Parkin Model

Following the analysis in Ref. (8), the mass diffusion rate

across a two-dimensional cavity surface, with the molecular

diffusivity K being replaced by a turbulent diffusivity vt is given

by

4pvtc 2- (2 .2)= -- ] ,(2.2)f2D ¢

where

- mass flow rate per unit cavity width

p - density of water

vt - turbulent diffusivity

c - concentration difference

A - Ui.a/2vt

I - length of two-dimensional cavity.
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Wrapping the two-dimensional solution around an axisymmetric cavity

of radius "a," one can write the mass flow rate across an axdsymmetric

cavity as

Ii8ptc~a12L 2T (2.3)

For a zero caliber ogive, the non-dimensional cavity length I and

cavity radius is related to the cavitation number a by the relations*

0.955 ,(2.4a)

and

a 0.7 15 D .(2.4b)

0.3

In Eq. (2.4b), D represents the diameter of the axisymmetric ogive

body. With Eqs. (2.4) substituted in Eq. (2.3),

A- 10.14pcDvtay0 .34 [1.3 82XI/
2a-1/ 2 - 0.886] . (2.5)

iie now devise a turbulent diffusivity parameter vt characteristic

of a free shear layer as

yet~ (2.6)

where

Vv 2 rom.s. turbulence level

I. m mixing length.

*(See, for example, Billet, M. L., J. W. Holl and D. S. Weir,

"Geometric Description of Developed Cavities on Zero and
Quarter Caliber Ogive Bodies," ARL/PSU TM 74-136 [1974].)
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For a planar mixing layer*

t - 0.076 (2.7a)

and

0 O.09U , (2.7b)

where 6 is the layer thickness. Therefore we will take

vt - 0.0063 6U.y . (2.7c)

In the following comparison, the constant of proportionality y is

taken to be unity. Figures 2.2 and 2.3 show the variation of

volume flow rates predicted by Eq. (2.5) and the corresponding

experimental values of Billet and Weir (13). It is observed that

the theoretical and experimental values compare well; at least they

are of the same order of magnitude! This good agreement is to be

expected if it is recognized that near the leading edge (where the

concentration gradients are very high) the boundary layer thickness

is very small and thus extension of a two-dimensional result to

axisymmetric cases appears to give a good approximation even though

the concentration layer is comparable to the cavity radius at the

tail end of the cavity (see Figure 2.4 below).

*See, for example, Launder, B. E. and D. B. Spalding, Mathematical

Models for Turbulence, Academic Press [1972).

I-
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2.4 Mathematical Analysis

The discrepancy that exists between the experimental results

and existing mathematical models for gaseous diffusion across

axisymmetric cavities prompted us to look at the validity of

extending existing two-dimensional diffusion models to axisymmetric

diffusion studies. While it is true that two-dimensional solutions

can be extended to include axisymmetric cases, such extensions hold

good only when the concentration boundary layer thickness on the

cavity is small compared to the radius of cavity. This is a rather

serious restriction for flows normally encountered where the

concentration layer thickness is not necessarily small, relative to

the radius of the cavity. Just to exemplify this point, the

concentration layer profile at the end of the cavity has been plotted

in Figure 2.4, the flow conditions being representative of experi-

ments reported in Ref. (13). It is clear that the concentration

layer thickness is comparable to the radius of cavity. Thus, a

more accurate mathematical representation for gaseous diffusion

across an axisymmetric cavity surface is clearly warranted.

Gaseous diffusion will occur when there is a dissolved gas

concentration gradient between the free stream and the liquid on the

cavity surface. If a is the measured dissolved gas content in

parts per million (ppm) by moles, then by Henry's law, the saturation

partial pressure of the gas in the free stream is given by

PFS " a-i (2.8)
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where B is the Henry's law constant which depends on temperature. If

PG is the partial pressure of non-condensable gas in the cavity,

then the mean concentration difference expressed in ppm by moles is

c - . (2.9)

Consider an axisymmetric flow of water containing dissolved gases

which has the concentration C(X,R) at any point in the region R > a,

where "a" is the radius of the axisymmetric cavity. The undisturbed

flow is taken to have a constant velocity U. in the positive

X-direction. In the interest of simplicity, all momentum boundary

layer perturbation velocities u and v in the X and R directions

respectively are neglected. The free stream velocity applies to

the entire flow field. The mass diffusion of gases through the

permeable axisymmetric cavity surface occurs between X - 0 and X - L

as shown in Figure 2.5. The remaining portion of the X-axis is

supposed to be impermeable to gas diffusion. On the permeable

surface, let the concentration have the constant value C0 and the

concentration of dissolved gases at points far from the permeable

surface have the value C . Then, the concentration difference c(X,R)

is defined as

c(XR) C(X,R) - C . (2.10)

U UW~ U ~ Uc XR.f
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Let K be the mass diffusivity parameter. We do not identify the

nature of the mass diffusivity parameter as either molecular or

turbulent. In either case, the governing differential equation for

the concentration difference has the form [see, for example,

Carslaw and Jaeger (22)]

U cV 2c ax (2.11)

where V2 is the Laplacian operator. By non-dimensionalizing the

linear distances along X, Y, Z and R by the radius of the cavity

such that x = X/a, y - Y/a, z = Z/a and r = R/a, we can write

Eq. (2.11) as

-C = --- V2c . (2.12)
ax aU

In order to determine the solution of Eq. (2.12) subject to the

prescribed boundary conditions, we first write the solution of

Eq. (2.12) when a source of strength "q" is located at the origin

in a moving fluid (22), as

c(x,y,z) _ q e-(r' - x) (2.13)

4wkr'a
where

q - mass flux of gas

k - mass conductivity = Kp
y2

2 + + z2  , the distance between the

field point and the origin

- mass diffusivity

p - density of the liquid

A - Ua/2K , a dimensionless parameter.

- ~ . ,
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If the source is located at (Fr, ) instead of at the origin,

the solution of Eq. (2.12) will be modified as follows:

c(xysz;;,ri, = q e-(r" - x) (2.14)
4irkr''a

where r = x - )2 + (y 2_) + (z- 2, is the distance between

the source point (Fn, ) and the field point (x,y,z).

We now consider a "ring source" of unit radius and unit strength

located at x = E. The plane of the ring is perpendicular to the

x-axis and the x-axis passes through the center of the ring. Consider

an element of the ring d8, as shown in Figure 2.6. Then the strength

of this element will be do/2n and from Eq. (2.14), the concentration

at a point (x,r) due to the flux of concentration at (Q,1,) will be

Sc(x,r;E,1,e) = dO e -(r - (x - )) (2.15)
8w2kr ' a

Integrating the right-hand side of the above equation between the

limits of 0 and 2w, we obtain the concentration at a field point

(x,r) due to a unit ring source at x = as

e(x - F) 2w -Ar"
c(x,r;E) = e e , (2.16)

87r2ka 0 r

where the distance r'' is now given by

r (x _;)2+r2 + 1 - 2r cos e • (2.17)

The integral in Eq. (2.16) has been evaluated in Appendix A.1 for

large values of A (of the order 2000) by using Laplace's method and

the result for the concentration is
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e(x--) e (x - C)2 + (r _ 1)2

c(x,r; 83/2 3/2- [(x - )2 + (r - 1 4  (2.18)

Equation (2.18) has the desired properties relevant to the physical

problem, viz., c o 0 as x + - - and c * 0 as r + -.

Now suppose that the mass flux per unit length between x = - -

and x - + - is given by the function f(x). Then the function c(x,r)

can be expressed in terms of this source strength per unit length as

c~x,r) - A On XeX-E [e-  (x 2 + (r 2

x - ]de , (2.19)
Vr-- (x V 2 + (r )2,

/ 4

where

A, 3/2 3/2 (2.20)
81 pa /2K-.

In the integral in Eq. (2.19), the limit - - to + - appears instead

of 0 to I because the unit ring source solution does not satisfy the

boundary condition at r - 1: dc/drlxc = 0. If we now require that

c(x,1) -c . C0 - C., in the interval 0 < x < 1, and dc/drlr=l = 0

in the intervals -- < x < 0 and Z < x < -, the source strength f(x)

is determined by the three integral equations of the form

Co 0 f 1£ f2(Q )  I f 2 (9)e.
A-ffi - dg + f - d + f -dC

O 
2-2X(9 

- x2)

f "f(&)e
+ f 3 dC (2.21)

I x -2
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xl ~ -2),( -x x) -2X,( - x1 )x1 f 1 0 f 1(E) e -XE xL f 2 ()e-W

0 f dE + f _d + f d

Vx ~~ x )-

- x 1  x1 € -x -x,

4 f 3 _____ dE (2.22)

L '

and

0 fl f2(E) x 3  f 3 (E)
0 f - dE f -~ d9 + f

+_f_3__ dE (2.23)
x 3  VE - x 3

where the positive branch of the square root has been taken. The

functions fit f2 and f3 are the source strength distributions in the

intervals - - < x1 < 0, 0 4 x2 < L and L < x3 < - respectively. These

three source functions are taken to be zero outside their specified

intervals.

The three integral equations (2.21) to (2.23) are coupled and

rather difficult to solve in their present form. In order to make

the solution tractable, we simplify some of the integrals appearing

in the three equations (see Appendix A.2) recognizing the fact that

the nondimensional number X is fairly large. Thus, the simplified

integral equations are
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0 x 2  Q)
-- f d + f  d& + T2-x

-" 7x 2 - 0 x 2 -

X fl()

f dc + 2 ( X  0 (2.22a)

0 f() x3 f3Q )

f dg + f 2 dg + f d + f3 (x3 ) - 0
--7 3 - 0x 3 - t / 3 -

(2.23a)

The integral equation (2.22a) has been solved using Picard's method*

in Appendix A3 and the result for f 1 is

21

fI(X) cle x1 < 0 , (2.24)

and c is an arbitrary constant. The function fl(xl) may now be

substituted in the integral equation (2.21a) and the function

f2 (x2) obtained by the Laplace transform method (see Appendix A.4)

as

c O  2Xx 2  2 C

f 2 c _ 2X + c1 )e erfc2x2  (2.25)

f2(x2) 
_____ X 2 2 lr/2Xrxc2

where the parameter X has been defined as part of Eq. (2.13), the

quantity A is given by Eq. (2.20) and

*See, for example, Hildebrand, Methods in Applied Mathematics,

Prentice Hall Inc. N. Y. 1952. ft
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where erfc(t) denotes the complimentary error function

2

erfc(t) = 2 e-x dx . (2.26)

Having found f,(xl) and f2(x2 ), one can find the function f3 (x3)

from Eq. (2.23a). We have not given this last solution here even

though the way to find it seems clear. The reason is that f2(x2)

controls the diffusion into the cavity and f3 is not required to

determine f2 " We note also that the source strength is strongest

near the cavity separation point so most of the mass flux will

occur at the start of the cavity and not near the downstream end.

The rate at which mass is diffused along the entire length of

the axisymmetric cavity is

dM)d(.7m = f f 2 (x 2)dx 2  (2.27)

0

Co 2 XerfcI2A 2t 1 22
0 e 2e+ r)[e 2/ V 2] c+ F . (2.28)

Equation (2.28) may be rewritten as

8wpa 2  c 2 erf + J -] + c 1[~ 2 XLfc- 2 , (2.28a)
w - I

We note here the fact the first term in Eq. (2.28a) represents the

two-dimensional wrap around solution. For large values of XI, one

can write
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e erfc72X _1 13 - 1 + , (2.29)
V7 i~2U 2(2XI 3 1

in which case,

i: - 64T kco0ar ,£i 3/2 + / 'V

20V-2 X 4(2 E)3  "

+ _ I (2.30)
Xiwr 2V.-XL 4(2XL)312

If we assume that the constant c1 has the same order of magnitude

as 8wpa Uc0, we can conclude from Eq. (2.30) that the expression

for mass flow rate across an axisymmetric cavity is the same as

the two-dimensional wrap around solution. This conclusion, of

course, is based on the simplifications we have effected in the

three coupled integral equations (2.21), (2.22) and (2.23).

These same approximations were employed by Parkin in his theory.

Nonetheless, the good correlations observed between Billet-Weir

experimental results and modified Parkin's model (see Figures 2.2

and 2.3) support the conclusions that we draw from the axisymmetric

cavity diffusion analysis. The reason for this being that most of

the diffusion takes place across the upstream parts of the cavity

where the diffusion layer is still thin and wrap-around is still

useful.
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2.5 Recapitulation

We have explored some of the aspects of gaseous diffusion into

axisymmetric cavities. A modifed Parkin model may be better suited

for the prediction of gaseous diffusion across cavities that emerge

from the leading edge than Brennen's model. We have demonstrated

through an axisymmetric gaseous diffusion analysis that (within the

assumptions and approximations) two-dimensional gaseous diffusion

solutions can be extended to the axisymmetric cavity with the

result that the turbulent mixing length diffusivity of Launder and

Spalding will be useful for the determination of diffusive mass

flow into the two-dimensional flows studied below.
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CHAPTER 3

EXPERIMENTAL INVESTIGATION OF THE BEHAVIOR OF NONSTEADY

CAVITIES BEHIND A WEDGE OSCILLATING IN PITCH

3.1 Introduction

An unsteady cavity flow about a solid body in a pure liquid may

be represented mathematically with the help of cavity flow theory and

it can also be understood physically. The presence of dissolved gases

in the liquid makes the same phenomenon difficult to understand. A

cavity in a pure liquid is filled only with the liquid vapor. So the

volume of an unsteady cavity filled only with vapor grows and

collapses in volume according to the motion of the body or according

to the imposed pressure field. In the absence of other flow distur-

bances, the vapor is absorbed and released almost instantaneously

because the time scale of the process of vapor release and absorption

is extremely small compared to the time scale of cavity motion and

hence cavity vapor pressure fluctuations are not seen. In such a

case, the pressure inside the cavity equals that of vapor pressure

of the ambient liquid at the equilibrium temperature at all times,

provided the temperature is not too near the critical temperature.

This situation, however, does not occur in the laboratory or

in practice. There are always certain amounts of free and dissolved

gases present in the liquid. On a cavitating body, these gases

diffuse across the cavity surface and are entrained by the turbulent

flow at the trailing edge of the cavity. This diffusion-entrainment

process is thought to influence cavity volume fluctuations and

associated cavity pressure fluctuations in an unsteady cavity.

if * % . 15
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Several investigations have been devoted in the past to the

analysis of steady gaseous diffusion across the cavity surface.

Parkin and Kermeen (8) studied the molecular gaseous diffusion into

a microbubble, whereas Brennen (9) considered gaseous diffusion from

a turbulent flow into a large cavity. Very few unsteady cavity flow

studies (both analytical and experimental) have been done in the past

in which cavity pressure fluctuations are considered, largely due to

the complexities involved in such studies. Although Leehey and

Jiang (16) measured the unsteady cavity pressures behind a three-

dimensional elliptical foil oscillating in pitch, there appears to

be no experimental study available aimed at a better understanding

of the behavior of unsteady cavities, particularly (a) the cavity

pressure fluctuations and their dependence on the frequency of

oscillations of the body; (b) the source-like nature of the unsteady

cavity; and (c) the cavity length fluctuation as a function of

frequency. The present experimental study is aimed at understanding

these aspects of unsteady two-dimensional cavities.

3.2 Experimental Apparatus

3.2.1 Six-Inch Water Tunnel

The experiment was conducted in the 6-inch recirculating

variable pressure water tunnel at ARL/PSU (21). In this tunnel, the

test section velocity was variable between 0 and 50 feet per second

and the static pressure was variable continuously between 0.5 psia

and 50 psia. The velocity was indicated on a digital voltmeter

which read the pressure drop between the settling chamber and the

I
p , ~ p -
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test section. The test section static pressure was read by a Heise

type Bourdon-tube pressure gage. The test section was 24 inches

long and was made of lucite to enable visual observations and video

recordings to be made of the unsteady cavity flow phenomena.

3.2.2 Model and Shaft

The foil used in this test was a wedge of rectangular planform

measuring two inches wide and four inches long and was made of

stainless steel. A small slot was made on the cavitating surface of

the foil to mount a pressure transducer that would measure the

unsteady cavity pressures. A small hole was made in the shaft running

axially to the middle of the foil to lead the pressure transducer

wires and also a static cavity pressure tap out of the tunnel. The

support shaft was made of stainless steel and the middle portion of

the shaft formed the trailing section of the wedge foil. The foil and

shaft were fastened together by a pair of dowel pins and set screws.

Two views of the foil-shaft assembly mounted in the test section along

with the hydraulic drive are shown in Figure 3.1.

3.2.3 Drive System

The drive system used was essentially a modified control surface

actuator. It consisted of two plungers actuated by a hydraulic

servo. The plungers were connected to the pitch drive plate fastened

to the shaft by means of a wire rope. When the servo was actuated

by an amplified sine wave signal, the shaft executed nearly sinusoidal

motion in pitch. Because of the slider crank mechanism, though the
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motion of the plunger was sinusoidal, the motion of the shaft was not.

However, an analysis of the error signals from the feed back unit

showed higher harmonics whose amplitudes were at least 40 dB lower

than the fundamental frequency of oscillation. The angle of attack

of the foil was varied by changing the d.c. offset to the hydraulic

servo. The frequency response of the pitch drive assembly which is

flat up to about 10 Hertz is shown in Figure 3.2. The static angle

of attack of the foil was variable continuously from zero to twenty

degrees. The dynamic angle of attack amplitude was variable

continuously from zero to fifteen degrees peak to peak. Using this

setup, the static angle of attack could be adjusted to an accuracy

of 0.02 degrees and the amplitude of foil oscillation could be

adjusted to an accuracy of ± 0.05 degrees. Figure 3.3 shows a

typical cavity behind the wedge foil.

3.2.4 Instrumentation

Unsteady cavity pressure was measured by mounting a crystal

transducer flush with the cavitating surface of the foil. This Barium

Titanate crystal transducer was calibrated in a slosh tube (22) with

a LC-10 hydrophone as the reference. The frequency response of the

crystal transducer mounted on the foil is shown in Figure 3.4. The

static pressure in the cavity was measured by a pressure tap leading

to the cavity from a Validyne diaphragm type pressure transducer. N.
The unsteady pressures upstream and downstream of the foil were also

measured with a Validyne pressure transducer. This transducer was

suspended from an independent support to eliminate possible effects

of tunnel vibration on the pressure transducer output.
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The amount of free air in the tunnel water was determined by

measuring the speed of sound in the upstream part of the test section.

This was achieved by transmitting a gated high frequency pulse (about

120 kHz) through a LC-10 hydrophone and receiving it diametrically

across the test section by a crystal transducer (Barium Titanate

crystal) as shown in Figure 3.5. The distance between the two trans-

ducers for the sound speed measurement was 7.443 inches. By measuring

the time delay between the transmitted and received pulse on a high

speed oscilloscope (Tektronix 7633), the speed of sound was

determined. The accuracy of speed measurement is within ± 30 ft/sec.

An example of the sound speed calculation and the estimation of free

air in the tunnel water is given in Appendix B.2. The dissolved air

in the tunnel water was measured by the conventional Van Slyke

Apparatus. During the course of the experiment, the dissolved air

content ranged between 7 ppm and 16 ppm by moles while the free air

ranged from 3 ppm (speed of sound = 4490 ft/sec) to 10 ppm by

volume (speed of sound = 3730 ft/sec). The measurement of free gas

and dissolved gas in the tunnel ensured that there was enough gas

supply in the tunnel water to maintain dissolved gas diffusion and

entrainment at all times.

All the unsteady pressure data were analyzed through a real time

spectral analyzer (Spectral Dynamics SD-300 and SD-360). The cavity

motions were recorded on a video recorder using a video camera.

pN
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3.3 Test Procedure

The range of test parameters considered for the experiments

were: (a) tunnel pressure: 1 psia -10 psia; (b) tunnel velocity:

10 ft/sec -45 ft/sec; and (c) foil oscillation frequency: 0.2 Hz

-30 Hz. Three distinct phases of investigations were undertaken as

described below.

3.3.1 Video Recording of Cavity Motion

The unsteady motions of the cavity were recorded on a video tape

using a video camera for several freauencies of foil oscillation for

sufficiently long periods to record many complete motion cycles at

each frequency. The plan view of the cavity was recorded and it

demonstrated that the flow was nearly two dimensional. A strobe was

used to obtain time history of cavity motion. Care was taken to set

the frequency of the strobe at a value that was different from the

foil oscillation frequency so that the variations of cavity length

with time could be determined. In this way, the variation of cavity

length for one complete cycle of oscillation could be determined by

measuring the length at a number of points in the phase of the

oscillation as explained below.

3.3.2 Source-Like Nature of the Oscillating Cavity

These tests were performed by measuring the unsteady pressures

at three field points at the tunnel wall: 32.5 inches upstream and

downstream from the axis of oscillation and 16.25 inches upstream

from the axi-' of oscillation. These field points were chosen such

that any "potential flow" pressures at these wall points due to an

SN
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oscillating cavity being present in the cylindrical test section were

negligible and the results can be thought of as far-field free stream

fluctuations. A computer code, developed by Fernandez (23), was

used to find an upper bound for this effect assuming the shape of the

cavity to be an ellipse. Figure 3.6 shows the variation of pressure

coefficient along the length of the tunnel for the extreme condition

when a body in the shape of an ellipse of semi-major axis measuring

3 inches and semi-minor axis measuring 1.5 inches is kept in the

test section. At each field point, unsteady pressures were measured

for several tunnel velocities keeping the cavitation number constant.

3.3.3 Measurement of Cavit:- Pressures

Steady and unsteady cavity pressures were measured for several

foil frequencies, cavitation numbers and static angles of attack. The

steady pressure was measured from the pressure tap leading into the

cavity. This pressure tap was connected to the pressure transducer

through a valve venting the line to the atmosphere in the laboratory.

By closing the valve only after the formation of the cavity, the

presence of water bubbles in the pressure tap line was completely

eliminated. Unsteady pressure data were analyzed through a real time

analyzer.

3.4 Test Results and Discussion

Sample data from the experiments are tabulated in Appendix B.1.

(A complete tabulation of the experimental data is available upon

request from the author.) The cavitation number was calculated

based on the measured steady cavity pressure. The maximum error

.d~ 4~ J ~... ~ *~% % ~ _!
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in calculating the cavitation number is estimated to be 4.8% (see

Appendix B.3). The region of the cavity where the cavity pressure

was measured was nearly two-dimensional. Hence a wall effect

correction appropriate to such flows developed by Hsu (24) was used

to correct the measured cavitation number. An example of this

correction procedure is contained in Appendix B.4.

3.4.1 Cavity Length Historv

At low frequencies of foil oscillation (0.2 Hz - 3.0 Hz) it was

noticed visually that the cavity behind the foil seemed to follow the

motion of the foil without any noticeable phase difference between

input foil motion and the resulting cavityr length cnanqe. However,

as the driving frequency was increased beyond 5 Hz, the phase lag of

the cavity motion was noticeable. Beyond about 20 Hz, there was very

little, if any, motion of the cavity due to the oscillation of the

foil. It was clear from these visual observations that the cavity

* has the appearance of an inertial effect.

The cavity length history was obtained by playing back the video

tape manually on a large television screen and measuring the cavity

lengths at equal time intervals, the time interval being governed by

the frequency of the strobe. The magnification of the cavity on the

television screen was properly accounted for in obtaining true cavity

lengths. The cavity length measurement on the screen was at times

hampered by the "not so clear" terminal end of the cavity. However,

all the measurements were consistently made and the cavity lengths

were measured within an accuracy of three millimeters.
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The time histories of cavity motions for a cavitation number of

0.47 at four different foil frequencies are shown in Figures 3.7(a)

through 3.7(d). It is apparent from these figures that the motion

of the cavity is far from being sinusoidal. The Fourier components

of these time histories are shown in Figures 3.8(a) through 3.8(d),

respectively. It is observed from these results that the cavity

motion consists of frequencies other than the fundamental driving

frequency and in particular the first overtone is significant in

all the cases. An observation of the spectra at different foil

oscillation frequencies shows that at 0.5 Hz, the motion of the

cavity is close to harmonic motion whereas at 1 Hz :he great

increase in the first overtone of the unsteady cavity is apparent.

As the frequency is increased, the cavity motion is again close to

harmonic motion as evidenced from the spectra in Figures 3.8(c) and

3.8(d). It is of interest to compare qualitatively these amplitudes

of harmonics of cavity motion with the linearized unsteady cavity

theory. If we denote Z(t) as the cavity length at an instant, we

may write (see Chapter 5)

t(t) = -- , (3.1)

where a(t) is the angle of attack and a is the cavitation number. V

For the oscillating foil motion, we may write

a(t) = a0 (i + t) , (3.2)

where ca0 denotes the amplitude of pitching motion. Recognizing

the fact that e is a small number, we can write for L(t),
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(t) + - -E- e +. (3.3)

The similarity between the measured harmonic contents of cavity

length and those obtained from Eq. (3.3) is now evident. Figure 3.9

shows the variation of amplitude of unsteady cavity motion (defined

as the peak to peak amplitude normalized with respect to steady

cavity length) as a function of the reduced frequency. It is clear

that the amplitude of unsteady cavity motion decreases rapidly with

increasing frequency. It is also of interest to observe that the

amplitude of unsteady cavity motion peaks at a particular value of

reduced frequency. Several attempts were made to measure the phase

difference between the cavity motion and foil motion. Because of the

extreme difficulty involved in such measurements, it is not surprising

that no meaningful data were obtained, using the present measurement

technique.

3.4.2 Source-Like Nature of Oscillatine Cavity

Figures 3.10 and 3.11 show the plots of the relative root mean

square pressure level in decibels at 32.5 inches upstream of the pitch

axis as a function of the test section velocity. The foil oscillation

frequency is relatively low, being less than 2 Hz. It is seen that

the unsteady pressure varies as the sixth power of the test section

velocity. This indicates that the oscillating cavity behaves like a

dipole source even at these low frequencies [see for example,

Donald Ross (26) and Billet and Thompson (27)]. Figure 3.12 shows a

similar plot of unsteady pressure versus test section velocity at a P%

point 32.5 inches downstream of the pitch axis. Here again, the

%
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dipole behavior of the oscillating cavity is very clear. Figure 3.13

depicts the measurements at a location 16.325 inches upstream of the

pitch axis. At an oscillation frequency of 10 Hz, the unsteady

pressure varies as the eighth power of the test section velocity.

This variation suggests that the oscillating cavity behaves like a

quadrupole at this frequency. This is possibly due to the phase

lag that exists between the motion of the foil and the motion of

the cavity at high frequencies. The oscillating foil and the

oscillating cavity each constitute a dipole source and with the

adequate phase lag that exists between them at high freauencies, %

they jointly constitute a quadruvole source.

3.4.3 Cavity Pressure Measurements

The measurement of steady cavity pressures as well as the

unsteady cavity pressures were accurate to within 2%. The steady

cavity pressure is normalized with respect to the ambient vapor

pressure of water. The variation of normalized steady cavity q.,.

pressure as a function of the parameter a/a is shown in Figure 3.14.

The average value of the dissolved gas content in the tunnel water

was 9 ppm by moles and the average value of the free air in the

tunnel water was 4 ppm by volume during these tests. The steady

cavity pressure is seen to be always greater than the vapor pressure

of water at the ambient temperature. It is observed that larger %

cavities (lower cavitation numbers and/or higher angles of attack)

sustain higher cavity pressures than smaller cavities. In the

range of a/a between 2 and 6, it is observed that the steady cavity

pressure has a nearly linear relation with a/a. Figure 3.15 shows the

W""
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variation of normalized steady cavity pressure at a steady angle of

attack of 8 degrees as a function of the reduced frequency parameter

k'. [Parkin (28) has shown that for cavitating oscillating foils,

the appropriate non-dimensional frequency is k' k/V1 + a, where k

is the reduced frequency in the non-cavitating case, k = wb/U.] The

amplitude of oscil.ation is 2 degrees peak to peak. It is observed

that the steady cavity pressure increases with frequency, reaches a

maximum value and then decreases with further increase in frequency.

This can possibly be explained by the entrainment process behind an

oscillating cavity. As the oscillation frequency increases, it

appears as though the re-entrant jet behind the cavity becomes

increasinzi-: stabie unzil a certain frequency Is reacned. The szanie

re-entrant jet reduces air en:rainment behind the cavity ana hence

the cavity is able to sustain higher cavity pressures. This %

situation however changes at high frequencies of foil oscillation

wherein the re-entrant jet becomes unstable due to the high freouency

surface waves interacting with the re-entrant jet. At high foil

oscillation frequencies, the cavity remains essentially stationary and

therefore the entrainment rate is equal to the gas diffusion rate N0

resulting in constant cavity pressure. In other words, so far as

steady cavity pressure is concerned, very low frequency oscillations

of the cavity and very high frequency oscillations of the cavity have

the same effect. It is quite interesting to observe that the

frequency at which the maximum steady cavity pressure occurs and the

frecuency at which the maximum change in cavity length occurs (see

Figure 3.9) are quite nearly the same, at k' 0.04.

V

I
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The variation of unsteady cavity pressure normalized with

respect to the steady cavity pressure as a function of the reduced

frequency is shown in Figure 3.16. Here the steady angle of attack

is 15 degrees and the amplitude of foil oscillation is 4 degrees

peak to peak. It is clear that the unsteady pressure peaks at a

reduced frequency of about 0.05 and then drops off rapidly with

increase in frequency. This behavior of unsteady cavity pressure K

with frequency may be explained from the unsteady cavity length

data. At very high frequencies, there is very little motion of the

cavity and hence the cavity pressure is very small. These trends

in unsteady cavity .ressures azre well n those c:- Janz an,

Leehev (17). Figure 3.17 similarlv shows the normalized unsteady

cavity pressure as a function of reduced freauencv at a steady

angle of attack of 8 degrees and amplitude of oscillation of

2 degrees peak to peak. Here the peak unsteady cavity pressure
occurs at a reduced frequency of 0.16 This is to be expected

because the cavity at a foil angle of 8 degrees is smaller

compared to the cavity at 15 degrees and hence it has a higher

resonant frequency.

It is interesting to observe from Figure 3.14 that the linear

relation between the cavity pressure and the parameter a/a enables

one to estimate the cavitation number, based on cavity pressure, in

terms of free stream static pressure, the vapor pressure at the

ambient temperature, the free stream dynamic pressure and the angle of

attack:

p. - 0.74 p
a = 0.0976 (3.4)

q. P

VE
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3.4.4 Recapitulation

These experiments on unsteady cavities have given us some insight into

their behavior. The variations in harmonic content for the motion of

the cavity have been clearly established. The source-like nature of

the oscillating cavity has been characterized as a dipole source at

low frequencies of oscillation and approaches a quadrupole source at

high frequencies. One would expect to see a monopole contribution as

well because of the cavity volume fluctuations and Fig. 3.13 suggests

such a possibility. However, this experimental fragment is

overwhelmed by the bulk of the presently available data favoring

higher-order singularities. Since the cavit-y and foil enerail'.' are

rather large for a six-inch diameter test section, the influence of

tunnel walls on these experimental findings remains to be

investigated. Low cavitation numbers and/or high angles of attack

result in higher cavity pressures. Unsteady cavity pressure is seen

to be significant only at low frequencies of oscillation.

-0 .4
_''
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CHAPTER 4

TWO-DIHENSIONAL UNSTEADY DIFFUSION ACROSS
A PERMEABLE CAVITY SURFACE

4.1 Introduction

From the previous studies on cavity pressure fluctuations by Jiane

and Leehey (17) and the present experimental investigations described in

Chapter 3, it is clear that gaseous diffusion plays a very important

role in the behavior of unsteady cavities. Parkin (8) studied steady

diffusion across a two-dimensional cavity surface, while Brennen (9)

considered steady diffusion across a cavity surface from a turbulent

flow.

It aooears however, :nat a corresuoncing anaiysis for unsteac,!

diffusion in an unsteady cavity flow is, to the best of our knowie e,

non-existent. Unsteady gaseous diffusion into a cavity may resul: from

two distinct mechanisms. First, since the cavity length fluctuates,

the gaseous diffusion into the cavity fluctuates. Second, since the

cavity gas pressure itself fluctuates, the concentration gradient

across the cavity surface is a function of time. In this chapter,

we formulate and solve analytically, the unsteady gaseous diffusion

across a two-dimensional unsteady cavity surface. The results of

this analysis will give a better understanding of the parameters

that affect the unsteady gaseous diffusion across a cavity surface.

4.2 Assumotions

It is assumed in the following analysis that the flow is in-

compressible, two-dimensional, isotropic and turbulent. (Turbulence

is inherently three-dimensional in nature. Nonetheless, a two-

dimensional flow field with unit depth may be considered for diffusion

tA
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analysis.) Boussinesq's hypothesis (29) is used in turbulence modelinz

and G. I. Taylor's (30) statistical theory of turbulence is used in

estimating the mass diffusivity for the flow field. It is assumed that

the mechanism for turbulent momentum transfer and turbulent concentration

transfer are identical. It is also assumed that the gaseous diffusion

occurs instantaneously across the cavity surface.

4.3 Theoretical Analysis

Gaseous diffusion will occur when there exists a dissolved-gas

concentration difference between the free stream and the liquid on the

cavity surface. If al denotes the dissolved gas content in the free

stream in parts per million, by -oles. t:'en by H4enry's law. :"e -:ximu-

partial pressure of gas in the free stream P-$ is

p F (4.1)PFS = i '(A)

where B is the Henry's law constant. If pG(t) is the instantaneous

partial pressure of non-condensable gas in the cavity, then the mean

concentration difference c(t) expressed in moles is

c(t) = (a- " (4.2)

We assume, as is customary, that the mechanism for turbulent

diffusion of gas in the liquid and across the wall and the turbulent

momentum transfer are similar and that gradients in mean velocity can

be neglected. Then, the turbulent diffusion is due solely to the C'
gradient of the mean concentration c(x,y). Consider a turbulent flow

field having a uniform mean velocity U in the positive x-direction, as

shown in Figure 4.1. Let the instantaneous concentration at a point

(x,y) be C(x,y,t). Also, let C be the concentration at large distances

*r.' ~- .p -
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from the origin and C be the saturation concentration on the cavity

wall. Let c = C - C be the concentration difference. From Fick's law

of diffusion and conservation of mass [see, for example, Batchelor (31)] %
1.

it follows that

ac _(u • V)c + ' L = c (4.3)

where V2 denotes the Cartesian Laplacian operator and K is the molecular

diffusivity.

Let the instantaneous velocity components be represented by

(U. + u'), v' and w' in the three orthogonal directions and let c = c + c'

where c is the time mean concentration difference. T1he comoonents u',

and w' are the instantaneous velocity fluctuations and c' is the

instantaneous concentration difference. Then, Ea. (A.3) becomes [see,

for example, Goldstein (32)] 

;,+U c 2 - c r r c' c 2c' , Vc , ;c'
K7 + LU. I + u IL + u I + v 1 2- N

a;xat ;aX ax ax ay ay

+w' w c +w' -- _V 2c' = 0 • (4.4)az azI

Time-averaging the above equation, we obtain

ac+~a c- ~ a a - ~ a 2
at ax -L = -L (I' c 7 + -'L (c K I- - ar -K I- _7

(4.5)

where the overbar indicates time averaging. Equation (4.5) shows that in

turbulent flows the eddy concentration transport terms - u'c', - v'c' and

w'c' add to the molecular concentration transports K a c y and

ax, ay
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a respectively. The eddy transport terms are large compared to

molecular transport terms (32). Therefore, the latter are neglected and

Eq. (4.5) reduces to

accat + U .x =  -L (7w7 2 ((-vc) - (- c') (4.6)

We now restrict our study to two-dimensional flows. We represent K
the turbulent shear stress pu'c' and pv'c' using Boussinesq's hypothesis

as

- Pu'c' AT , (4.7a)

and

---
- v c =A- , (4.7b)

0 v

where A_ is the exchange coefficient or eddy mass conductivity. Let vt

denote the eddy mass diffusivity. Then, '.

AT/ ,(4.8)

where p is the density of the liquid. Substitution of Eqs. (4.7) and

(4.8) in (4.6) yields

- -2- 2-U. c ac ac-a

-c + U. -= t (- + -) (4.9)
ax ax 2 ay2

The boundary conditions pertinent to the two-dimensional unsteady

diffusion are:

T 0 y = 0, x ( 0 , x ) t (4.10a)

Oi !
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and

c c (0 + c(t)) ; y = 0 , 0 < x < . (4.10b)

where Z(t) is the unsteady cavity length given by -,

2.t 2 1+ E2(t)) (4.11)

wher e i a sallquantity.

We now let

c(x,y,t) = c (x,y) + ,c( yt (4.12)

where c5 and cu represent respectively, the steady Dart and unsteady part

of the concentration c. -,

3 Substitution or Ec. (4.12) in Ea. (1,.9) results in two eauations

c-9 a9-c a

a c ac a 2c a2
+ v. (-x - + +s) (4.13a)

at~ t 2 2

ax ;y

Thhe e stad s arqtidfeetatyuto.41a atsistesed

_ _ _ 6 _

pato h onaycondytion (4.10) viz.(,y~)(.2

ac a < <

The e s teady partial differential equation (4.13a) satisfies the steady

part of the boundary condition (4.10b) viz.,

%

+ c ;-- = 0,(0-<_u + 2. ) (4.14b),."'

i The steady partial differential equation (4.13) satisfies the usteady

part of the boundary condition (4.10b) viz.,

I ,0<x<£ .(.4s o I
ThIntayprildfeeta qain(.3)stsisteused ,.

partof he bundry ondiion(4.0b) iz. 1
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c = c (t) ; y = 0, 0 < x < t(t) . (4.15)
u 0

The steady partial differential equation has been solved by Parkin (8).

The solution of Eq. (4.13b) subject to the boundary conditions (4.15) is

obtained in stages. First, a point source solution that has the proper

radial symmetry and behavior is obtained. Second, the point source

solution is used to formulate an integral equation relating the

concentration at a fixed point and the mass flux per unit length alonz the

cavity. Third, the concentration difference at the cavity surface is used

to solve the integral equation.

The fundamental solution of Ea. (4.12b) for an oscillatinz unit

source at the origin is (See Appendix C.I.)

(x( - - ) e (.)
2 -rAT, o

where Ko(z) is the modified Bessel's function of the second kind. It

should be noted that r, x and y appearing in Equation (4.16) are

dimensionless and that R = -O a "diffusive Reynold's number."
2v '

We now introduce the harmonic oscillations of the unsteady boundary

conditions resulting from the angle of attack oscillations at a circular

frequency of w radians per second. Suppose that the cavity length

oscillations lag the foil oscillations (see Chapter 5) by a phase angle of

*. Then, the unsteady cavity length at x = to is given by eto eJ(wt+) or

e to eJ eJWt.

. ..
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The gas pressure within the cavity PG(t) may be written as

PG(t) p Go(l + 6 p(t)) (4.17)

where 6 is a small quantity.

With the assumption that the harmonic cavity pressure fluctuations

lag the foil oscillations by a, we may write from Eq. (4.2),

c(t) = (at - a - ap (4.18)

So that the concentration fluctuation cu(t) across the permeable surface

is given by h'

c (t) = - +

i.e. ,

c ) 
= 

- - S - (. 9) .

) a e" a" e( .

where Oa is the phase angle between foil motion and cavity pressure

fluctuations. Equation (4.19) clearly indicates a phase lag of 7 radians

between the concentration fluctuations and cavity pressure fluctuations.

The steady concentration difference co at the permeable surface is

c =(cz -cx) . (4.20)
1 a

Let f(x;k) be the mass flux per unit length. Then the function c(x,y;k)

can be expressed in ters of f(x;k) as follows:

c(xy;k) f(;k(RJk)(x)K (R (x-) + y ) d&

(4.21)

where N

+ e.

bwe

S%%
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If we now require that c(x,o;k) = co -aa6 eJ in the interval 0 < x 4 z,
a.

the source strength is determined from the integral equation

J a K__x__-F a e = [f f(&;k)eR( - K(Rx- )e-Jk(x-E)d'

+ f f( ;k)e - R( - x ) K (R( -x))eJk(g-x)d ]  (4.22)

where the positive branch of the square root has been taken. The function _

c(x,y;k) also satisfies the conditions that co as (x2 + y2) + - and that

3c/3y(x,o) = 0 when x < 0 and x > Z•

S (;-.) we have com ined zhe steady as well as the unsteadv

boundary conditions for both cavity length and cavity pressure. Th1e

reason for this is that the point source solution in the unsteady case
.- %

reduces to the steady source solution as the reduced freauencv k goes to

zero. This fact also implies that 6 = 6(k,a) , C = E(k,z) and that 5 and

s both vanish as k + o.

In order to determine f(x;k), we shall make use of the fact that R is

a large number for the present study. Therefore, K. in Eq. (4.22) can be

replaced by the first term of its asymptotic expansion,

S(z) = . (4.23)
0 2

A further simplification can be obtained in the second integral in Eq.

(4.22) by noting that the strong negative exponential will cause f( ;k) to

contribute to the integration only near x. Therefore, we replace the

second integral in Eq. (4.22) by the approximate value, -V f(x;k) ___

/2R-jk %

-Avq
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With these approximations, Eq. (4.22) may be written as

- d e a - f d + f2R-jkJ (4.24)o a 2T T 2R 1 x M -

If the Laplace transform of f(x;k) is denoted by F(s;k), we can transform

Eq. (4.24) to find

2AT V2R (c 0 a a e

F(s ;k) (4.25a)

1 + 1 1
(s + jk) (2R -jk)

Rearranging terms, we have

*0-X

2A_ i2R (c - a 6e ) /2R - s .

F(s ;k) 2 (.2 b)

s [/ - jk + ,Vs + jk]

-he inverse of this transform gives (see Appendix C.2) for f(x;k') the

result,

-(bk) 0[a  b - ba
- k = -e erfc(bVx) -- erf/ax ] , (4.26)

a a a

where

a
Q =2A 2R(c - a 6 e ) /2R -jk , (4.27a) .

*a

a =jk , (4.27b)

b =2R -jk (4 .27c)

a= 2jk - 2R (4.27d)

= £(t)/b as before, N

W-
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and erf(x) and erfc(x) denote the error function and complimentary error

function respectively. We note here the fact that the function f(x;k)

which represents the mass flux per unit length is independent of the

cavity length.

The rate at which the mass is diffused per unit width along the

entire length of the permeable interval is obtained from

M(k) f f(x,k) dx , (4.28)

0

a b -Xx - bVa -
i.e., M(k) = 0 -- e erfc b,/x -- err Vax ) dx • (.9

,

0 a a

The integral in Eq. (4.29) has been evaluated in Anpendix C.3 and the

result is

M _ 0 ra2. + b- b-/--

M(k) - + - e-erfc (b +- erf - - b Va ZerfV T

-b e + - err Vai] (4.30)
2 Va

Equation (4.30) gives the instantaneous unsteady mass flow rate along the

cavity surface. We now compare this instantaneous mass flow rate relative

to M., the mass flow rate obtained in the steady limit. By letting

the reduced frequency k go to zero, we obtain the steady limit for

mass flow rate as

V..

5/
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2RRI
e 0erfc2Rio 2

F 2R -LR ] . (4.31)

We can now write the instantaneous mass flow rate in terms of the quasi-

steady mass flow rate as

M0 [I + r(k)ej*(k) ]  (4.32)

where Mor(k) represents the absolute value of the frequency dependent mass

flow rate and * is the phase angle by which the instantaneous mass flow rate

leads or lags the steady value.

It is of interest now to look at the relative effects of varying the

concentration and cavity length on the unsteady mass flow rate. By a

simple sensitivity analysis of the auasi steady mass flow rate (see

Appendix D.1) we obtain

AC
0 A t. (4.33)Co 2

0 0

where the A before a quantity represents a small change in that particular

quantity. For the experimental investigation reported in Chapter 3, the

AC
maximum value of is of the order of 5%, whereas the maximum value of

0

AL.
T is of the order of 20%. Thus, it is clear that for the experiments

0

reported in Chapter 3, the contribution to gas diffusion across the cavity

from changing cavity lengths and changing cavity gas pressure are equally

significant.
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4.4 Recapitulation

We have developed an analytical model for the prediction of gaseous

diffusion across a two-dimensional unsteady cavity surface. This model

takes into account the change in cavity length as well as changes in

cavity pressure in predicting the gas diffusion across the cavity surface.

The expressions for mass flux per unit length and mass diffusion rate

across the entire cavity length reduce to those obtained by Parkin (8)

when the reduced frequency k is zero. The instantaneous mass flow rate

across the unsteady cavity may be easily obtained from the ouasi-steady

mass flow rate and the lag function. We reiterate here the general fact

that this unsteady gaseous diffusion analysis is valid only7 r armoniz

variations in cavity gas pressure and possibly in cavity length.

Nonetheless, this analysis could be extended to encompass a general

nonharmonic motion of the cavity by Fourier representation of the cavity

length and cavity gas pressure fluctuations, provided that one first

accounts for the nonsteady cavity closure conditions to be considered

next.

1I

I I I IR K 1
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CHAPTER 5

A STUDY OF NONSTEADY CAVITY CLOSURE

5.1 Introduction

The analysis of a two-dimensional unsteady cavity of finite

extent (i.e., non-zero cavitation number) has been studied among

others, by Parkin (28), Wu (5), Guerst (33) and Acosta and

Furuya (34). The fact that a cavity volume change in two-

dimensional unbounded flow would create infinite pressures

puzzled many researchers and was thought to be non-physical at

the time. Wu (5) points out the fact that such cavity volume

changes in two-dimensional flow are indeed physically plausible

and mathematically they represent "inner" flows of some three-

dimensional outer flows. Acosta and Furuya (34) rightly exemplify

this fact by the existence of unsteady cavities in water tunnel

experiments.

The presence of gases in an unsteady cavity flow makes the

study of such flows even more interesting and introduces more

complexities. Recently, Kato (35) has pointed out the general lack

of knowledge that exists in understanding transport phenomena at

the cavity surface. The results of the unsteady cavity flow

experiments reported in Chapter 3 have clearly shown that the cavity

pressure does not remain constant during the oscillation of a finite

cavity and indeed even the steady gas pressure of an oscillating

cavity depends on the frequency of oscillation! Clearly, the

unsteady gas diffusion plays a role in the dynamics of an unsteady

cavity.
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The idealized closure condition in cavity flow means that at

every instant, the cavity-body system is a closed body. Several

models have been postulated in the past for the closure of an

unsteady cavity. Among them are the kinematically closed model

proposed by Tulin (36), the constant volume model proposed by Guerst

(33), the fixed cavity terminus model proposed by Leehey (37) and

the generalized cavity closure model proposed by Parkin (28).

Acosta and Furuya (34) have demonstrated that Parkin's model which

involves the evaluation of a difficult retarded integral has the

proper quasi-steady limit when the reduced frequency goes to zero.

The closure condition postulated by Parkin has been and remains to

be difficult to evaluate from first principles of the analysis

although Parkin proposed a step-by-step numerical scheme which has

never been employed. In the present study, we shall evaluate the

phase angle between foil motion and cavity motion by means of a

simplified kinematic nonsteady closure condition and then relate the

cavity pressure fluctuations and cavity volume fluctuations. Such an

analysis should lead to (i) a better understanding of the gaseous

entrainment behind nonsteady cavities and (ii) relate observed

pressure pulsations to unsteady gaseous entrainment.

5.2 Steady Cavitv Closure

We first look at the steady cavity closure when there exists a

certain amount of gas in addition to water vapor within the cavity.

Continuity of mass flux of gas through the cavity dictates in

general that the mass flow rate of gases through the cavity must
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equal the rate of entrainment behind the cavity plus a possible rate

of change of air mass inside the cavity. In the limit of steady

flow this last part will vanish. Thus, we can estimate the rate of

entrainment of gases behind the cavity by estimating the gas

diffusion rate through the cavity surface.

For a flat plate at a small angle of attack aO, we can

estimate the cavity length 10 at a cavitation number a (28) as

(see Appendix E.1)

(5.1)

From the steady cavity pressure measurements reported in Chaoter 3

(see Figure 3.14), we can approximate the dependence of cavity gas

pressure and a/a as

PG

. _ 0.0976 - + 0.74 . (5.2)Pv 0

If we denote by a1 the amount of dissolved gas in tunnel water,

the concentration difference (in ppm) that exists between the

free stream and cavity surface may be expressed as

c W a1 - PG/B " (2.9)

Thus we observe from Eqs. (5.2) and (2.9) that the concentration

difference c is a function of /a0O . We can obtain the mass flux

into the cavity from the upper surface as well as the lower surface

of the two-dimensional cavity from a modification of Parkin's

diffusion model as

40 M - [/2-R + 22---] , (5.3)
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where vt is the turbulent eddy mass diffusivity and where L0

represents the cavity length on the upper surface and Ll represents

the cavity length on the lower surface. Figure 5.1 shows the

comparison between the gas entrainment rates when the cavity gas

pressure is nonzero and for a hypothetical purely vaporous cavity.

This fictitious vaporous cavity is used only to bound.the diffusion

rate. We observe that the entrainment rate decreases with the

presence of gases within the cavity as expected. For small values

of a/aO, the difference in entrainment rate is hardly noticeable

because at low values of a/a0 the mass diffusion rate due to an

increase in cavity length is more significant than the decrease in

mass flow rate resultini from increased cavity gas pressure.

5.3 Nonsteadv Cavity Closure. Phase Relations

The difficulties encountered in measuring experimentally the

phase angle between the foil motion and cavity motion has been

alluded to in Chapter 3. Because of the lack of knowledge that

exists in the literature in the determination of the present phase

relations, we turn to physically motivated arguments aimed at

finding the phase difference between cavity length oscillations and

hydrofoil pitching oscillations.

Consider a two-dimensional cavity behind a foil, as shown in

Figure 5.2a. The foil has a steady angle of attack ao . We suppose

that the foil oscillates in pitch about B with a frequency of w

radians per second, the amplitude of oscillation being A.. The

angle of attack -(t) at any instant is then given by a(t) - -o + A.

sin wt. We now approximate the upper surface and lower surface of
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5.2b Physical Plane Representation of Linearized Two-
Dimensional Cavity
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the cavity by the slits AC and BC respectively as shown in Figure 5.2b.

The closure condition of the nonsteady cavity depends on kinematic

waves (28), having ctnstant celerity qc but different travel distances

on the upper and lower surfaces, terminating at a single point C behind

the cavity. For kinematic waves originating simultaneously from points

A and B to reach C at the same instant, there must exist a phase lag

in the wave originating from the lower surface relative to the wave

originating from the upper surface. Since a(t) is responsible for

these waves, we can say that the phase of the cavity terminus

oscillation lags that of the driver a(t).

If the travel distance on the upper surface is £.u and the travel

time from A to C is t, then tu is given by Zu/qc. The travel time on

the lower surface of distance, ZZ, is given by tZ = (Zu - b)/qc if the

cavity is closed. But the difference in travel time between the upper

and the lower surfaces is tu - tL = At c- and then w At = 6

Therefore the closed-cavity termination phase lag is determined by

W At = -- . (5.4)

We now recognize the quantity was the modified reduced frequency k'

and write

= k' . (5.5)

Thus we observe, within the limitations of the present assumptions that

if the kinematic waves (28) from the upper surface and lower surface

terminate at one point at the same instant, the phase angle equals the

modified reduced frequency. This result conforms with the

Old,
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qualitative visual observations made during the experimental

investigation viz., at low frequencies there is hardly any phase

difference discernible whereas at higher frequncies, there seems to be

a noticeable phase difference between the foil motion and cavity

motion.

We note in passing, that this simple analysis is consistent with

the linearized approach of Parkin (28), but we have used the

preceeding physical argument in order to avoid the nasty retarded

closure integral introduced in (28). If we were to relax this

consistency, we would replace the factor b by b cos wo, from which we

would have the phase angle as k' cos -0 instead of k'. As to be

expected, in the limit, for small oscillations of a vertical plate

there would be little or no phase difference between the upper and

lower surfaces of the cavity.

An additional aspect of the present approximate argument is that

the value of At is independent of the fundamental frequency of the

foil oscillation, the important factor being the constant value of qc.

Because of this fact this same phase lag, *, between profile and

cavity terminus oscillations must apply to the higher harmonics of the

cavity length fluctuations as reported in Figure 3.8 above and as also

suggested by Eq. (3.3). This means that this phase lag angle depends

on the basic foil oscillation. Cavity oscillation overtones of 2w and

3w, etc., would not have phase lags of 20, 30', etc, as might be

supposed at first glance.

5.4 Nonsteady Cavity Closure, Entrainment Rates

If the cavity ordinate at any instant is j(x,t), then the cavity

closure condition is expressed as (28),
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f dn = 0 (t fixed) o (5.6)
body

Now, we shall assume that the cavity behind a flat plate of chord

length b, at an angle of attack a(t), at any instant t, may be

approximated by a part of an ellipse fitted to the cavity termination

point, L(t), and to the leading edge and trailing edge separation

points, see Figure 5.2a. We also assume that the length of the cavity

1(t) is measured from the nose of the flat plate as shown. Then, we

take the equation of the ellipse to be

(x- + h2 2 + 1 (5.7)

a b2  1

where (h,k) represents the center of the ellipse and the quantities a

and b represent the semi-major axis and the semi-minor axis of the

ellipse respectively. At any instant, the ellipse will pass through

the points (0,0), (1, - -sin a) and (b cos a, - b sin a). These

three conditions lead to

h2 k2
a + - . 1 (5.8a)
a 2 b2

- h) 2  b sin a + k)2

an a2 b+ 2 , (5.8b)

and

(b cos a - h) (b sin a + k) 2

a2 + 2 (5.8c)

11V ~ W11 ,1 11111M11 11'1 11I
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For small values of the angle of attack az, we can write from Equations

5 . 8 a , b a n d c ,k - - b( 
5 9

h - (5.10)

b - 1/2

S1 + 4(-) 1/and b-- (5.12)

It should be noted that the cavity length appearing in Eqs. (5.11) and

(5.12) is dimensionless, (L/b). From Eqs. (5.9) and (5.10) it is

clear that f or small angles of attack, the center of the elliptical

cavity is fixed to the center of the foil. From Fig. 5.2a it is

apparent that the cavity volume V per unit depth is then simply the

the area of the semi ellipse

21

an 0 (1 e .e (5.leja)

22 2Lj~

wher 0 (4 e + ,a-A/Z0)

Equation (5.13b)cnb witna

2 o 2 (1 -1/2t 0

1 % 4 N "
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The steady cavity volume Vo from Eq. (5.13b) is

ra b
v -

so that the cavity volume V at any instant can be written as

V v(i + vejwt) , (5.14)

where

=(ce
1  + Aa ( - 1 (5.15)

2L. 21 0

We now look at the conservation of mass flux of gas through the

control volume consisting of the cavity surface, the gas within the

cavity and the mass entrained from the cavity terminus. Let m be

the total mass of gas within the cavity at any instant, Md be the

mass flux of gas diffusing into the cavity through its surface and

i be the mass flux of gas entrained out of the cavity through the

cavity end. Then we can write the continuity of mass as

Ad t +  (5.16a)

Let A represent the steady gaseous diffusion rate across the
0

entire cavity surface. Then, from Eq. (5.16a), the gaseous mass

entrainment rate i relative to the steady gaseous mass entrainment

rate Md is given by
0
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Md am (5.16b)

ad Ad 'da t
0 0 0

By using a quasisteady approach, the incremental mass diffusion

rate due to cavity pressure changes and cavity length changes may be

written from Eq. (5.3) as,

Ad +, (5.17)
o c o

Mdo 0

where Iu  and L represent the steady dimensionless cavity
0 0o o

lengths on the upper surface and lower surface respectively. The

Ac
quantity c has been evaluated in Appendix E.2 in terms of a/a0o it
and Aa /a and the result is

Ac -0.0976 (a/ )(Aa /a )(p/B) (5.18)
c v a

a -  - (0.74 - 0.0976 2- )

Assuming that the gas within the cavity behaves isothermally, one may

use the equation of state (see Appendix E.3) to obtain for am/3t,

a%b pG k' q c i *a(

at - 2RT - (Aa + + L u (
0 0

p-W3
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where R - specific gas constant (-1718 ft.lb./slug "R),

fa - phase angle between cavity pressure fluctuation and

foil oscillation,

T - absolute temperature of the gas within the cavity.

From Eq. (5.3) the steady gaseous diffusion rate is given by

- 2R + J , (5.20)

where R in Eq. (5.20) is the diffusive Reynolds' number,

R - Ub/2v . Eqs. (5.17) through (5.20) may now be substituted in

Eq. (5.16b) to obtain the total entrainment rate d/1d as

a Aa Pv

- -0 04

1d --- 0.74 - 0.0976-) 2
0 1. B L 0

0ab [6 u - 0.5)(Aa + 6ei a) + Lu- e o . (5.21)

2RT Md 0 0
0

A polar plot of the total entrainment rate for four different

reduced frequencies is shown in Figure 5.3. The experimental data

points from Figure 3.8 and 3.14 on cavity length amplitudes and a

quasisteady gas pressure amplitude based on the linear regression of

Figure 3.14 have been used in obtaining these calculated data points.

(See Appendix E.3 and E.4 for sample calculations and tabulated

results). It must be noted that the unsteady entrainment rate

amplitudes in Figure 5.3 are root mean square values and that the

calculated data points in Figure 5.3 refer to a single value of

a/ao 0 [For different values of l0, one might naturally expect to0E
obtain a family of curves similar to Figure 5.31.
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It is observed from Figure 5.3 that the total entrainment rate at

any oscillation frequency always lags the foil motion. The maximum

phase angle *, is seen to be about 20 degrees. For large values

of k', the amplitude of the nonsteady entrainment rate tends to I
decrease rapidly, as shown by the dotted line in Figure 5.3, with the

limiting value of zero for very high frequencies. At least, the

present experimental data for reduced frequencies k' up to k' - 1.0

would seem to indicate such a trend. The rapid decrease in cavity

length amplitude at reduced frequencies k' higher than 0.23 in

conjunction with the time resolution available from the video-tape

records used for measuring cavity lengths made it impossible to obtain

cavity length amplitudes for frequencies higher than k' - 0.23. It

is of interest here to observe that the nonsteady entrainment rate

lags the foil oscillation by nearly 90* at all frequencies. It

appears that as the cavity is increasing in volume, the cavity is able

to sustain higher cavity pressures and thus lower entrainment results

behind the cavity. The uncertainty involved in obtaining data points

in Figure 5.3 is difficult to predict, given the many variables and

assumptions involved in the calculations. However, the trend

predicted by the semi-empirical model is interesting and should serve

as a guide for future research in this area.

5.5 Recaoitulation

In this chapter, the two-dimensional gaseous cavity closure in

steady as well as nonsteady cavity flow is analyzed. It is observed

that the presence of gases within the cavity alters the gas

entrainment rate behind the cavity. The change in steady gas

Jil-
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entrainment, however, is seen to be insigifnicant as the ratio /c

decreases. By imposing the fact that the surface of a nonsteady

cavity is essentially a material surface at every instant and assuming

that the surface waves from the upper surface and lower surface of the

cavity terminate at one point behind the cavity at every instant, the

phase relation between the foil motion and cavity motion is obtained.

This phase relation is seen to be consistent with the experimental

observations. The nonsteady gaseous entrainment behind the cavity is

estimated using the nonsteady continuity equation, with the

assumption that the gas within the cavity undergoes isothermal

compression and expansion. The nonsteady gaseous entrainment is seen

to depend primarily on the cavity volume fluctuations and cavity gas

pressure fluctuations because it is found that for the range of

reduced frequencies considered here the diffusion into the cavity is

quasi-steady. It is also seen that the nonsteady entrainment rate

always lags the foil oscillation.

11611.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

It has been the aim of this thesis to address and resolve some

of the aspects involving gaseous diffusion in steady and unsteady

cavity flows so that the phenomenon of gaseous entrainment behind

a cavity may be better understood and an improved representation for

the influence of the nonsteady cavity in a water tunnel test section

can be obtained.

We have demonstrated very clearly that existing mathematical

models for gaseous diffusion across axisymmetric cavity surfaces are

inadeauate. While the exact solution of the three coupled integral

equations formulated in Chapter 2 might result in a more accurate

representation of the gas diffusion phenomenon across axisymmetric

cavity surfaces than has been possible until now, it seems likely

that a more realistic model of the important physics would be more

fruitful. Even so, the highly simplified approach used with the

best experimental results available from the literature appears to

give satisfactory estimates of diffusive mass flows into the cavity

from the free stream.

As noted above, a plausible alternative for the solution of the

axisymmetric diffusion problem is by a two-layer diffusion model.

Such an asymptotic solution of the problem will represent a more

realistic physical model of the phenomena which could account for

molecular gaseous diffusion from the free stream into the turbulent

concentration layer and turbulent diffusion from the turbulent

momentum layer into the cavity.

Z60
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From the experimental results obtained at upstream and

downstream locations with respect to the unsteady cavities, we have

been able to identify and quantify the unsteady cavity as a dynamic

element. The cavity behind an oscillating foil has been

characterized as a dipole source at low frequencies of oscillation.

Unsteady cavity length measurements have shown that for sinusoidal

oscillations of the body, higher harmonics of the cavity

oscillations are important to be considered, especially the first

two harmonics are seen to be significant. Steady cavity pressures

are generally seen to be much higher than the vapor pressure.

Furt 'r experiments are definitely warranted, perhaps in a

larger water tunnel, to extend the range and scope of the present

experimental investigation. The measurement of phase difference

between body motion and cavity motion for several reduced

frequencies would be most helpful in modeling unsteady cavity

closure. Even so, the unsteady gas diffusion analysis presented in

Chapter 4 in conjunction with the experimental results has enabled a

more realistic cavity closure model to be developed than has been

possible heretofore.

The steady cavity clossure for gaseous cavities has shown that

the presence of noncondensable gas in the cavity does affect the

steady entrainment rate of gases at the cavity terminus. The

formulation of nonsteady gaseous cavity closure involves the

determination of phase angles between the foil motion and i)

nonsteady gas diffusion through the cavity surface, ii) the cavity

volume fluctuations, and iii) cavity pressure fluctuations,

respectively. By a simple cavity terminus closure model, we have

.
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been able to estimate the phase difference that could exist between

the foil motion and the cavity length motion. The many variables

involved in estimating the nonsteady entrainment rate clearly

suggests the need for more refined experimentation and theory to

understand more fully nonsteady gaseous cavities and the related

turbulent entrainment rates.

AIQ
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A.1 Asvrnutotic Evaluation of Integral in Eauation 2.10

The integral in Eq. (2.10) is

T.- f de (A.1.1)

where

2 2 2
M M (x- + r + 1 .(A.1.2)

(We recall here that the distances r, x and g are non-dimensionalized

with respect to the radius of the cavity and X - U. a/Zac is a large

number of the order 1000.)

We use Laplace's method (see, for example, Nayfeh, A. H.,

Introduction to Perturbation Techniques, John Wiley, 1981, p. 88)

to evaluate the integral in Eq. (A.1.1).

Letting

f(8) -1(A.-1-3)

4m27rosO

and

h(e) V- - ' 2Vcos (A.1.4)

The integral in Eq. (A.1.1) may be written as

2w
I -f f(e)e Xh( e (A.1-5)

0 *

We will now expand h(e) and f(8) in Taylor's series.
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dh rsine s t hat h

Als o,

12h - (2Z - 2rcoso)rcasi r2s 23

de- (M _ 2rcose) 1

and

d 2h, r

d 8 e-O (M2 _ 2.)l1/2 , a negative quantity

Hence, the function h(e) has an absolute maximum value at 8 -0 and

it may now be expanded in a Taylor's series about e 0:

h(S) -h(0) + h'(O)e *92 hl (o)82 +

i.e.,

1 rS + * (A.1.6)

For the function f(S),

f~e) - 1so that f(0)

df __ rsine ta df0
d8 (Mn2 _ 2rcose) 3 /2  NO0m

INI
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d 2 f 3r 2sin 2 - rsinO(m 2- ..rcose)

d 8 2Cm 2 rcos) 5/2

so that-.J 2- 2
d 8 20 (m - 2r )372

Hence the function f(O) also has an absolute maximum value at

8 - 0. f (a) may now be expanded in a Taylor's series,

f2() -)3/2 + * (A. 1.7)

Substituting the series expansion for f(e) and h(e) in Eq. (A.1.5),

we have

I f [(m2 ) -1/ r9 2 -)-3/2

0

X(m2 2r 1/ 2 + r 2  +

e 2 m2:rd8 (A.1.8)

In Eq. (A.1.8), the limit -instead of 2wr appears because the

absolute maximum value of the function h(O) occurs at 8 - 0 and

hence the maximum contribution to the integral results from the

region in the neighborhood of 8 -0. Equation (A.1.8) may be

rearranged as

IRI
-! R 16-i 

* 4
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T - exp(- xr2/2 / r)d9

re-2 - , 2 2 2
_- f a exp(- XrS/2 m _Zrde

2(m2 _ 20 3/2 0

(A.1.9)

The integrals in Eq. (A.1.9) may be evaluated (see, for e.amole,

Gradshteyn and Ryzhik, Table of Integrals, Series and P-roducts,

Academic Press, 1979) and the result is

S2r 1 +

(m2 - 2r)1/
4  (m2 - 2r) 3/4A

(A.1. 10)

For large values of X, we can neglect all but the first term

in Eq. (A.1.10) and obtain

. 2 i_ A1.1I, 2 - )/4" •c,.~z

Substituting for m from Eq. (A.1.2), we have

- /(x - 2 + (r _ 2

[ 2 2 1/4 (A.1.12)

r) or

,9m



k.2 Simalification of Inteqral Mauations

Simolification of Eqs. (2.21), (2.22) and (2.23): Consider

Eq. (2.21). The third integral on the right-hand side of Ea. (2.21)

is

f 2( )e

f 2 •2
x /V -- 7

Recognizing the fact that X is a large number, the strong

negative exponential causes the function f2 to be a slowly varying2l
function and thus f2 may be assumed to contribute to the integral

only near - x2 . Thus,

f 2()e-2 - x 2 ) L -2X(E - x2)

f _ de a f2(x2) f e dc

x2 VE - x2 x2 x2

The upper limit L may be replaced by - and the integral

evaluated to get f 2(x2) . The very same arguments lead to the

simplification of second integral of Eq. (2.22) and fourth integral

of Eq. (2.23).

Similarly, the fourth integral on the right-hand side of

Eq. (2.21) is

Integral f d

x. 2

i
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Letting x m, we have

- 3 e m

Integral =f _ dm

Once again because of the strong negative exponential, we may "arite,

W -2'Xm L--.% 2 -27XM
Integral - f 'Z - X7)[f - j~m _ fr e..~

0 r) V m

Integral - f 3 (1 - x2 )erfc2X(L - x 2)

We now note that f3 is defined only in the interval L < C <,.
Thus, the fourth integral on the right-hand side of Eq. (2.21) is

zero. The fourth integral on the right-hand side of Eq. (2.22) is

Integral - 3 _ d , x1 < 0

By leeting - x m, we have

Integral- f x dm

Once again, because of the strong negative exponential in the

integrand, we may write,

I
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Integral - f 3(L. - X 1)[ f -1 dm - f1e21 a

Integral - f 3 (1. - x 1)er.4cVzx(z - x 1

Recalling the fact that x 1 is negative, the inteal is 0.
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A.3 Solution of Ea. (2.22a)

Equation (2.22a) is

f1 -___ d + f1 ( 1  0fi (A.3. 1)

1

Wie rewrite Eq. (A.3.1) as

'C

fl~l + k f rx dg 0 (A.3.2)

where

k -. (A.3.3)

We shall use Picard's method with

f10W - c 1 e (A.3.4)

where p and c 1 are unknown constants. Then substituting Eq. (A.3.4)

in Ea. (A.3.2),

1 P

f -, (l kc, f e d& (A.3.5)

Uf we now let t - x C, we have

f 1 ,1 (xl) -- kc 1e 1 f - dt
0 V?

PS
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i.e.,

px 1

f- - (cte .V .A.3.6)

We note that f1 1,x1 ) is nor very different from fln (xI). Rence

we choose p such that f1,0 (xl) - fl,(xl). Thus we obtain

e px(1 ± k 0

Taking the negative square root* so p is real, we get

1 -k -0

or

p wric . (A.3.7)

Thus

i2x
fl(xl) c1 e , x1 4C 0. (A.3.8)

*This is required for the function fl(xl) to satisfy the integral

equation.



117

A.4 Solution of Ea. (2.21a)

Equation (2.Zla) is

CO 0 f x2 f 2
f - + - d+f + f2 (A.4.1)

12 Z 0 VX2 12
Substituting the value of f from Ea. (2.24), we have

C 0 c e 2X4 x2 f
f-- I& d + f d + -F2 f 2 (A.4.2)

VX-0 /x 2 VV

Consistent with our approximations in the first integral appearing

on the right hand side of Ea. (A.4.2), we shall assume that the

strong negative exponential will cause 1 to vary slowly soVx, -

that it can be assumed to contribute to the result only near 0.

Thus,

C0  C 1 2 f 2TX - + - dg + -F f 2"

Taking the Laplace transform and simplifying, we have

0 Cl 1 (A.4.3)F 2
2" (Is + sAJ V2) (is + T2X

where F2 is the Laplace transform of f2. Tal'ing the inverse

Laplace transform, we find for f2'

V 2' x c 2Xx ____ efcf 2 (x 2) A - 1 erfc2)x2 .. l [. /2" e
V2X. 4 rx 2

(A.4.4)

N.%
V..'

q-,'/
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B.2 Measurement of Free Air Content in the Test Section

The change in acoustic velocity as a function of free gas

concentration is given as (see for example, John M. Killen and

John F. Ripken, "A Water Tunnel Air Content Meter," St. Anthony

Falls Hydraulic Laboratory Report No. 701

CP
a )(B.2.1)

where

Cx - velocity of sound in the mixture

Cv - velocity of sound in water

x - concentration of free gas by volume

Ew - bulk modulus of pure water

Pa - absolute pressure in the test section.

In order that Eq. (B.2.1) applies, it must be established that the

gas bubble sizes present in the test section are smaller than the

resonant size corresponding to the frequency of the measuring

acoustic signal. From Eq. (B.2.1) we can obtain an expression for

the concentration of gas,

C
2

X x (B.2.2)[w Pa

i - 'E- J
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ExamDle: For a measured time delay of 140 microseconds at a tunnel

test section pressure of 4 psia, the concentration of gas is

determined as follows:

The time delay Td may be expressed as

T - 1.443/12 6/12
d 5000 C (3.2.3)

x

where the first term represents the time delay through the lucite

walls and the second term represents the time delay through gas

water mixture.

Hence, for Td - 140 microseconds, C. is calculated from

Eq. (B.2.3) to be

C - 4312 ft/sec

The bulk modulus for pure water is 32 x 104 psi. Hence from

Eq. (B.2.2),

4(5000 2 1)
Si f4= 4.3 x 10- 6

(32 x 10- 4)

i.e., x = 4.3 ppm by volume.
A

__ --
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B.3 Analvsis of 1roerimental Error

(1) Cavitation Number

The cavitation number a is defined as

PO - Pc" 1 ") 0 (B.3.1)

1/2 U-

where

po - test section pressure

Pc - steady cavitation pressure

p. - density of tunnel water

U.. - free stream velocity in the test section.

From Eq. (B.3.1),

n a - n(po - P - in - Lnp - 2nU

so that

Aa _A(po - PC 2AU ,Po - (B3.2)

where the a before a quantity signifies a small error involved in

measuring/estimating that quantity.

The maximum error in calculating (po - Pc) is 0.12 psi. The

minimum value of (po - Pc) during the experiments is seen to be

2.7 psi. The maximum error in calculating the free stream velocity

is 0.05 ft/sec. The minimum value of U. during the experiments

is 25 ft/sec. With these extreme values, the maximum absolute

error in estimating the cavitation number may be calculated as

I. -, . . . . . ,.- ., ,• .. , , ,• , .., , ..
ITk
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a1 1.7 25

Rence the error in estimating the cavitation number is at the most

(2) Concentration of Gas

From Eq. (3.2.2) the concentration of gas is given by

P a C 2

a 3 B.3.2)

where

?a - test section pressure

E- - bulk modulus of pure water

- speed of sound in pure water

Cx - speed of sound in the mixture.

We want to bound the error in the estimation of concentration of

gas when there is a known uncertainity in the measurement of speed

of sound in the mixture.

From Eq. (B.2.2),

AC

t ~ x +(.. ~ a (B.3.3)
Ix C 2+Pa

v

noting that Ew >> Pa.

~ N - '
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The maximum error in measuring the speed of sound in the

mixture is 30 ft/sec. The minimum speed of sound in the mixtrure

during the experiments is seen to be about 4000 ft/sec. The error

in reading the tunnel pressure is 0.1 psi and the minimum tunnel

pressure is 3 psia. Hence from Ea. (B.3.3),

230

Therefore the bound on the error in estimating the concentration

of gas is 8%.



3.4 Wall Effect Correction for Cavitation 1).mber

The technique described by Hsu (24) is used in obtaining the

true cavitation number. Following Hlsu, the linearized results for a

two-dimensional flat plate hydrofoil with trailing cavity in a

closed tunnel are:

where

L 1/2
Afi2a(L- 1) ,(.4)

and

1 L Th /?L 1/4 wL -1/4
A -- (-.- cosh ( - +i1 [cosh - 11V 2 ( , 'aJL

(B.4.3)

In the above equations,

a- angle of attack

c - chard length of foil

Z. - cavity length

L L+ c

HR tunnel diameter.

Having found al from Eq. (B.4.1), the true cavitation number

is found from

(2 + a1)a1

2+2 + 2 (B.4.4)

Iw
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Examale: The cavitation number calculated from the measured cavity

pressure is 0.75. The cavity length z is 7.32 c=u. The chord

length of the foil is 7.14 cm. The angle of attack is 10 de-rees.

From EQ. (B.4.2),

S 14. 46 1/2

x f 0.353 •

From Eq. (B.4.3) for - 2.981,

xw =-2 (2 x 2.981) [cosh(2.981) + 11 4 [cosh(2.981) 1]1/4

X - 2.34

From Eq. (B4.1),

0.353 2.34 - 1.277
1 -0.353

From Eq. (B.4.4),

(2 + 1.277)1.277a -. 2

2 + 2 x 1.277 + 1.277

a -0.676

U
F1U
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C.1 Fundamental Solution of Ea. (4.13b)

Fundamental solution to Equation (4.13b) for an oscillating unit source

at the origin:

Equation (4.13b) is

- -2- 2-

at x U (C.1.1)
at lx tax 2 ay2

We assume that the cavity length fluctuations are harmonic. Then, the

entire concentration field cu is harmonic so that

c U(x,y,t) = c( e (C.1.2)

where w is the circular frequency of harmonic oscillations and j = V- . It

is to be noted that only the real part of the analysis that follows is

physically pertinent. Substituting Equation (C.1.2) in (C.1.1), we obtain

jwc+U -c - c a c) (C.1.3)
a U-- 2 ay 2 "

We normalize the x and y coordinates by the flat plate chord b and simplify

Eq. (C.1.3) as

jkc + 2 -Lc -1 _- + -) I(C.1.4)
2axc+ , R a x, 2 ay,2 ,

ax ,

where x' -- (C.1.5)

b1
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f __(c.1. 6)

k - reduced frequency, (C.1.7)

Ub

R -- -- Diffusive Reynolds' number (C.1..3)
2,

To solve Equation.(C.1.4) we replace the Laplacian on the right-hand side by

its counterpart in plane polar coordinates when variations only in the radial

direction are permitted. Then,

ZJkcR + 2R 2c r C La (C.1.9)

where

x - r cos 8

y - r sin 8

8 - tan17-

It must be noted that the coordinates x and r appearing in Eq. (C.1.9) are

dimensionless.

By letting

px

K C1.1
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Equation (C.1.9) can be written as

. -__1c + I" ac (C.1.12)
as a 2 r2  r

We now use separation of variables to solve Equation (C..12). By

substituting

C(s,r) - S(s)X(r) , (C.1.13)

Equation (C.1.12) mav be written as

S + 1X 22W2jk R+-- +  _rL (C.1.14)

where K is an unknown constant. Therefore,

'' K 2
x +- K X _ 0 (C.1.15)rm

it

s K 2 2jkR . (C.1.16)
S 1

Equation (C.1.15) may be rewritten as
!I

!2

r2 2x + r X - K2 r2X 0 ,(C.1.17)

! 2 dr 1
dr2

and the solution for K > 0 is

X(r) - A I ( PIr) + A2 K (KI r) , (C.1.18)

where Al and A2 are constants and Ko and Io are the modified Bessel's function

of zeroth order of first and second kind respectively.

Note: Negative values of K yield functions

S1

or lr .r I %W I'l 9
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Jo and Yo (Bessel's function of zeroth order of first and second 'kind U
respectively) which do not satisfy the boundary conditions.

Note 2: 2 . 0 yields a logarithmic function which again does not satisfy1N
the boundary conditions.

For large distances from the origin, the function c(s,r) should vanish.

Hence, we set Al - 0 in Equation (C.1.18). Therefore,

X(r) - AZ K d r). (C..19)

The solution of Equation (C.I.16) is easily written as

(C2 _ 2jkR)s

S(s) Be 1, (C.1.20)

where B is an unknown constant. Hence, from Equation (C.1.13),

I2

(IC21 - ZjkR)s
C(s,r) = Be Ko(icr) , (C.1.21)

where Bi - BA2 is a new unknown constant. The arbitrary constant B1 and the

separation constant K1 are obtained by requiring that Eq. (C.1.21) go to the

proper steady state limit (8) when the reduced frequency k goes to zero. This

results in

B1 - 2 , (C.1.22)

and ,c = R (C.1.23)

Hence, for a unit oscillating source,

I -Jkx Rx
c(x,r) e e K0 ( (c.1.24)

Pv 0 (C.1.24
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C.2 Inverse Laulace Transform

To obtain the inverse Laolace Transform of the function

F(s,t) 0 Vs + -k (C.2.1)
sL 2R jk +is +jkl

Let

a - jk, (C.2.2)

and

b -i2R -jk . (C.2.3)
Then

F(st) 0 s + a (C.2.4)

F(s,t) - Q[ v + b b (C.2.5)

s - +a + b] sIIs +a +b]

or

F(st) - - b (C.2.6)

s s s +a + b

Let

H~)-b(C.2.7)N
s[is+a +4 b]

or

H() s~s + a b b2

Denote

ci -a - b2 (C.2.8)
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Then,

H(s) b is + a b- (C.2.9)s (S + a) s(s + -()

Denote

Z(s) - b + as (C.'.1O)
s(s + C)

Z (s ) . S + a + b "

b m
s(s + a) /s + a

Z(s) I +b
2

b s is -+a s(s + a) s+ a

b2

b b 1C1 (C.21.11)
s is +a a s is +a (s +a) Vs a

Substituting Equation (C.2.11) in (C.2.9), one has

3  3  1 b2
H~) b b (C2.2 "Ib

s a-as - (s +) Vs+ a s(s +)

Substituting Equation (C.2.12) in Equation (C.2.6), one gets

F(s,t) .Q(1L b b- + b 2F ss +
is +a as i s a(s +a)' s a s(s +)

(C.2.13)

Taking the inverse Laplace Transform on both the sides, one finds

2-f(x,t) a b -MbV
E - - e erfcb Vx - _ erf i-- . (C.2.14)

aL a a
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C.3 Integral Evaluation

Equation (4.25) is

- f f(x,t)dt ,(C.3. 1)

0

where

f(x,t) ( a - b2e-Qerfcb /x - b V/a erf Vax) - (C.3.2)

Substituting Equation (C.3.2) in (C.3.1),

L(t) L(t) Ltr)
dM o [ adx - b2 f e- erfcb /xdx -b ia- f erf /axdx] .
dt0 0

(C.3.3)

Let

Lt)

I, f e-"xerfcb vix dx , (C.3.4)

0

and

L(t)

o
The integral in Equation (C.3.4) may be evaluated by parts.

e -ax L-er -- t) I bde x
I1 erfcb x- - 0 f e-- dx

C 0/'
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9()-ax

1 _ e -ercb z b f _ dx (C36)

a V-0 V'x

By setting ax n n2 in Equation (C.3.6), we can show that

I e-er:cb 2. b erf V-a (C.3.7)
11=;- a -

The integral in Equation (C.3.5) can be obtained by parts,

• ._. (t Vt) 4e -ax

I ; xerf Vaxj - f x - dx

_ ±(t)

12 = Lerf /a-- !a f Vx, e-aXdx (C.3.8)
w 0

The integral in Equation (C.3.8) may be evaluated again by parts and the

result is

12 = Lerf -a + e --a erf ia- (C.3.9)
2 a

Hence from Equation (C.3.3),

Mb 2  b2  -at - b
dm- . Q [at--+- e erfcb / T4 + erf V at"
dt a a a

a a

+ b erf Fa- - b "e -b /" £erf Via] • (C.3.10)
2,/a

t.

I I. -"

. " , • ., . .. . .. . . . , V
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The quasi steady mass flow rate across a two-dimensional cavity

is, from Equation (4.23)

e2RZ r4c 1
1 4A R c (e Zr -- - ) (4.28)

QS T o ° R ,R R

For large values of the argument 2RZ,

2R erc - -1 1e er'c- - " - .3/2 +  "" ) . (D.1)
R 2(2R z)

Substituting Eq. (D.1) in Eq. (4.28) above,

M 2-, -'F(2!r+ 3 2 +  " (D.2)

QS 2 2~ /
Vir 2 7-lki 4(2RL)

Retaining only the first term within the brackets in Eq. (D.2), we

take the logarithm on both sides and then differentiate to obtain

AM AcOS --- At (D.3)

MQS c0  21 0

and this is the basis of the order of magnitude discussion surrounding .

Eq. (4.31) of Chapter 4.

- IrK'!-I
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APPENDIX E

UNSTZADY ENT'AINM2T DATA AND CALCULATIONS



E.1 Quasisteadv Concentration Fluctuation Amplitude 129

5.0 EXPERIMENT

EQUATION 5.1
W.Le

4.0

3.0

00

. 2.0-0

~1.0-

00 0.2 0.4 0.6 0.8 1.0

ala0
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E.2 Quasi-Steady Concentration Fluctuation Amplitude

Equation (5.2) is

= - 0.0976 - -+ 0.74 . (5.2)
Pv a0

Taking logarithms on both sides and then differentiating Eq. (5.2),

one obtains , 6

ApG = 0.0976(a/a )(Aa /a ) Pv (E.2.1)

0

From Eq. (2.9), the concentration difference c expressed in ppm by

modes is

PG

Co M a1 (2.9)

so that

AC APG
0 0

C c
0 O0

Substituting from Equation (E.2.I),

Ac -0.0976 (a/a )(Aa /a )(PV/B). (E.2.2)

c 0 a1 - (pv /)(0.74 - 0.0976 a/a 0
:' O

,, . q . q . .,N .W_ .:dM. V



E.3 Evaluation of am/at in Eo. (5.16b)

Let V - total volume of cavity in cubic feet,

m - total mass of gas in the cavity, in slugs.

Then, at any instant, the equation of state for the gas within the

cavity is PGV-T 

(E.3.1)

Where R is the specific gas constant and R = 1718 ft.lb./slug *R

for air.

Assuming that the temperature of gas within the cavity remains

constant, Eq. (E.3.1) may be partially differentiated with respect to

time to obtain

am 1 aP G av(E32
at 7 T (V t- -+ PG tt)(E3)

From Eq. (5.13a), the cavity volume V is

V ab- (5.13a), 2 2"

j Wt
where a a 0(1 + hoe )

0 (t+

and I- LO(1 + e )

Differentiating Eq. (5.13a) partially with respect to t and

neglecting terms of order cAa, one obtains after suppressing the

e t factor

-- 0 - An] (E.3.3)
at 2 2

• 1W
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Now, from Eq. (4.17), the cavity gas pressure PG(t) is

PG (t) - pG(1 + Se J +a ) ('.17)
0

Differentiating Eq. (4.17) partially with respect to t and

suppressing eiwt factor,

a3 G Gp0 ktq C j (.~34

Substituting Eqs. (E.3.3) and (E.3.4) in Eq. (E.3.2), one obtains

am 0QPk~ [(i - )~ a + Aa) + L e . (.35
at 2RT Uo- )S M35
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E.4 Unsteady Entrainment Calculated Data

The sampl.e calculations below show how the tabulated results were

obtained for one case at a 10 Hz frequency and 2* peak to peak foil

amplidtude.

From Eq. (5.3),

M - .+ (5.3)
0 i 00

Umb
For R- 2v- 2500 , C 10 ppm, a/ri - 2.7,

= 2.32, -t 1.32, A d - 1.46 x 10 slugs/sec ft0tl 0 0 SUSsef

From Eq. (E.2.2),

Ac
- -0.0025

c
0

. S 0.165 x 0.707 - 0.033

2 L L 2 1 2.32 x 1.32
0 0

The last term in Eq. (5.21) is

bri o k'q c j -. 
'a)

T0 pG0 k (qCL -)A ie )+ ee 0

2RT [( 2 )(Aa + Se u 0
0

From Eq. (5.5) -- k' - 0.03 radians - 1.72. From Equation (5.2)

and (E.2.1), 6 - 0.05.

Vwe .4c.1Wr
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From Eq. (5.15),

V = (e j  + Aa --- Ila L -

v - 0.239 + 0.006j - 0.239 @ 1.44*

Oa = 1800 + 1.44 = 181.44 •

From Fig. (3.14), for ala - 2.7, p - 72 lb/sq.ft.
0

Substituting the values, the last term in Eq. (5.21) is

-0.002 + 0.065j, as tabulated.

4
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